IFAE 2023 - Catania

Aggiornamento del Tracciatore per la Fase ad Alta Luminosità dell'Esperimento CMS ad LHC

Rudy Ceccarelli

A Nome della Collaborazione CMS

13/04/2023

LHC ad Alta Luminosità

- Il programma High Luminosity LHC (HL-LHC) è previsto iniziare nel 2029
 - La luminosità istantanea raggiungerà $7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ durante il Run-5
 - Luminosità integrata fino a 4000 fb^{-1} in 10 anni
- Tutti i rivelatori di CMS saranno aggiornati per poter operare nelle nuove condizioni
 - 'Pile-up' medio fino a ~ 200 in CMS
- Il tracciatore di CMS sarà completamente sostituito
 - Necessaria alta granularità ed alta resistenza alle radiazioni
- Nello strato più interno del futuro tracciatore
 - Elevata frequenza di passaggio di particelle: 3.2 GHz cm⁻²
 - Elevato danneggiamento da radiazione: $1.8 \times 10^{16} n_{eq}/cm^2$ (0.93 Grad) per i Run-4+5

Il Futuro Tracciatore

- Il futuro tracciatore di CMS sarà composto da due sezioni:
 - Inner (rivelatori a pixel)
 - **Outer** (rivelatori a strip and macro-pixel)
- Accettanza fino a $\eta \sim 4$
- 2×10^9 pixel
- 43×10^6 strip
- 170×10^{6} macro-pixel

 $\sim 120 \text{ m}^2$ di silicio

Rudy Ceccarelli

3

Parte I

Inner Tracker

Sensori a Pixel

- Due tipologie di sensori saranno installate nel futuro tracciatore
 - Sensori a pixel planari: impianti superficiali
 - Sensori **a pixel 3D**: impianti colonnari
 - Minore tensione di polarizzazione necessaria a svuotarli
 - Distanza di deriva ridotta rispetto a sensori planari (50 μ m vs. 150 μ m)
 - Minore probabilità di intrappolamento dei portatori di carica in sensori irraggiati
- Sensori 3D saranno installati nello strato più interno del tracciatore (a 30 mm dalla linea di fascio)
- Geometria (sia per planari che per 3D): pixel $25 \times 100 \ \mu m^2$ e spessore attivo di $150 \ \mu m$
- I sensori 3D sono stati testati prima e dopo essere stati irraggiati fino a $1.5 \times 10^{16} n_{eq}/cm^2$
 - Ottima risoluzione ed efficienza anche dopo irraggiamento
 - Prevista la sostituzione dopo $\sim 1 \times 10^{16} n_{eq}/cm^2$

Poster di Martina Manoni:

Caratterizzazione dei rivelatori a pixel ultra-resistenti alle radiazioni per la fase ad alta luminosità dell'esperimento CMS a LHC

Due celle $25 \times 100 \ \mu m^2$ di un sensore a pixel 3D

Sensore a pixel 3D Fotografia dal wafer

Il Chip di Lettura: CROC

- Il chip di lettura è accoppiato al sensore tramite 'bump-bonding'
 - Sensore + chip \rightarrow Modulo a pixel
- Il CROC (CMS-Read-Out-Chip) è sviluppato dalla collaborazione RD53
 - Collaborazione ATLAS-CMS per sviluppare chip di lettura per HL-LHC
- Il CROC ha 145152 canali (336 righe e 432 colonne)
 - Passo di $50\times 50~\mu m^2$
 - Dimensione totale: 18.6 mm × 21.6 mm
 - Tecnologia CMOS a 65 nm
 - Resistente alla radiazioni fino a 1 Grad
 - \sim la dose attesa nello strato più interno per i Run-4+5
 - Soglie < $1000 e^-$ e fino a 4 × 1.28 Gb/s in uscita
 - Può essere alimentato **serialmente** tramite regolatori Shunt-LDO installati sul chip

Rudy Ceccarelli

IFAE 2023

Configurazione

- Separazione in $z \sim 0$ (ma $z \neq 0$) •
- TFPX: otto doppi dischi piatti per estremità •
 - Quattro anelli per disco •
- **TEPX:** quattro doppi dischi piatti per estremità -150 •
 - Cinque anelli per disco ٠

del tracciatore

Vista laterale di un

Inner Tracker:

Moduli

- I moduli sono costituiti da un singolo sensore accoppiato a quattro (2×2) chip (strati esterni)...
- ...o due (2×1) chip (strati interni)
 - I moduli sono incollati ad un HDI, sul quale viene eseguito il wire-bonding

- Nel strato più interno di TBPX si avranno moduli $\mathbf{2} \times \mathbf{1}$ con sensori 3D
 - Lo strato sarà sostituito tra il Run-4 e il Run-5 a causa dell'elevato danneggiamento da radiazione
- I moduli saranno ricoperti di 'parylene-n' per mitigare gli effetti di scariche elettriche ad alto voltaggio
- I moduli saranno montati su un supporto in fibra di carbonio e raffreddati da un sistema a CO_2 a -35 °C
 - 168 anelli di raffreddamento con tubi in acciaio dal diametro di 1.8 mm

Alimentazione Seriale

- 50 kW sono necessari per alimentare i moduli a pixel
- Una alimentazione diretta richiederebbe troppo materiale
 - Convertitori DC/DC sono ingombranti e poco resistenti alle radiazioni
- Soluzione: alimentazione seriale in corrente
 - Nessuna massa aggiuntiva ed alta resistenza alle radiazioni
- I moduli sono organizzati in catene alimentate serialmente
 - La corrente è condivisa in parallelo tra i 2 o 4 chip di un modulo
 - A sua volta, in ogni chip la corrente è divisa tra digitale e analogico
 - Due shunt-LDO, presenti sui chip, di occupano di regolare la tensione
- 576 catene seriali
 - 8 A per moduli 2×2
 - 4 A per moduli $\mathbf{2} \times \mathbf{1}$
- La tensione di polarizzazione per i sensori è fornita in parallelo

Sistema di Acquisizione

- L'elettronica di comunicazione è contenuta in apposite **'portcard**' poste nel cilindro di servizio
 - Circa 700 'portcard' che contengono tre chip LpGBT e tre link VTRX+ per la conversione optoelettronica
- Link elettrici tra modulo e portcard mediante 'flex cables' o 'twisted pairs'
- Fino a sei link elettrici in uscita 1.28 Gb/s (dai moduli alle 'portcard')
 - 3.84 Gb/s per chip nello strato più interno del tracciatore
- Un link elettrico in entrata a 160 Mb/s (dalle 'portcard' ai moduli)
 - Clock, trigger, comandi e configurazioni dei chip
- Segnali ottici da/per custom board per Data, Trigger, Control (DTC)
 - 10 Gb/s dalle portcard per le DTC e 2.5 Gb/s dalle DTC alle portcard

Parte II

Outer Tracker

Configurazione

- Accettanza Outer Tracker fino a $\eta \sim 2.5$
- Due tipologie di moduli: doppia strip (2S) e pixel-strip (PS)

Contributo al Trigger

- A causa dell'alto 'pile-up' in HL-LHC, è necessario include le tracce nel trigger di primo livello (L1)
 - Miglior potere discriminatorio
- Per limitare i dati da inviare ad L1 ad ogni 'bunch-crossing', il tracciatore effettua una selezione...
 - ... rigettando le tracce che hanno un basso impulso trasverso p_T
- Modulo p_T : due sensori in silicio molto molto vicini e sovrapposti sullo stesso modulo
 - Elettronica di lettura in comune per i due sensori
- La curvatura della particella (dovuta al campo magnetico all'interno di CMS) dipende dal suo p_T
 - Le tracce che passano un certo taglio in p_T vengono inviate ad L1 ad ogni 'bunch-crossing'

Tipologie di Moduli

- Saranno presenti due tipologie di moduli p_T
- **Moduli 2S:** due sensori con strip 5 cm \times 90 μ m
 - Due differenti **spaziature**: 1.8 mm, 4 mm •
 - Ottimizzate a seconda della regione del tracciatore
 - Dimensioni dei sensori: 10 cm x 10 cm •
 - Due colonne di 1016 strip ٠

- **Moduli PS:** un sensore con strip 2.5 cm \times 100 μ m strips + un sensore con macro-pixel 1.5 mm \times 100 μ m
 - Tre differenti spaziature: 1.6 mm, 2.6 mm, 4 mm •
 - Dimensioni dei sensori: $5 \text{ cm} \times 10 \text{ cm}$ ٠
 - Due colonne di 960 strip e 960 \times 32 pixel •
- Si stanno assemblando e testando entrambe le tipologie di moduli
 - 42 moduli 2S •
 - 21 moduli PS •

Elettronica di Lettura

- I moduli 2S sono letti da otto chip CBC (CMS-Binary-Chip), in tecnologia a 120 nm
 - Sensori accoppiati ai chip tramite 'wire-bonding'
 - I chip fornisco sia le primitive a L1 (a 40 MHz) che i dati al DAQ in caso di trigger confermato
 - Un singolo chip legge canali da entrambi i sensori
 - 254 canali per chip (127 per sensore)

- I moduli PS sono letti da otto chip SSA (Short-Strip-ASIC)...
- ... e un chip per i macro-pixel MPA (Macro-Pixel-ASIC) accoppiato mediante 'bump-bonding'
 - Le primitive a L1 sono inviate dal chip MPA, che esegue un abbinamento con le informazioni provenienti dai chip SSA
- Entrambe le tipologie di chip sono realizzate in tecnologia a 65 nm

Sistema di Acquisizione

- Sia sui moduli 2S che sui moduli PS sono presenti due chip CIC (Concentrator-Integrated-Circuit)
 - I dati vengono formattati, convertiti in ottico (chip LpGBT e link VTRX+) ed inviati alle DTC
- Segnali ottici a 5.12 Gb/s o 10.24 Gb/s dal modulo alla DTC (a seconda della posizione del modulo)
 - Primitive per L1 e dati per il DAQ
- Segnali ottici a 2.56 Gb/s dalla DTC al modulo
 - Clock, trigger, comandi e configurazioni
- Le informazioni per L1 sono forniti a 40 Mhz, mentre i dati a 750 kHz (dopo la decisione di L1)

Grazie per l'attenzione!