Qualifica di moduli a pixel per ITk con chip di readout ITkPixV1 e primi sensori 3D di pre-produzione di FBK

Lapertosa¹, S. Ravera², M. Ressegotti², <u>Leonardo Vannoli²</u> ¹(INFN Catania), ²(INFN Genova e Università Genova)

IFAE 2023

Incontri di Fisica delle Alte Energie, Catania, 12-14 Aprile 2023

ATLAS si prepara per HL-LHC

- HL-LHC partirà nel 2026: la luminosità istantanea 5-7.5 x 10³⁴ cm⁻²s⁻¹
 - L'esperimento ATLAS rimpiazzerà l'inner detector con un tracking detector completamente in silicio (pixel + strip): ITk Detector
- Il pixel detector di ITk:
 - 5 strati di pixel ibridi
 - L2-L3-L4: sensori planari (150 µm)
 - L1: sensori planari (100 µm)
 - LO: sensori 3D

13/04/23

- L'inner system è pensato per essere sostituito dopo 2000 fb⁻¹
 - Una fluenza di 2 x $10^{16} n_{eq}/cm^2$

Il chip di Front End di ITk: ITkPix

- ITkPix sarà impiegato come FE di tutti i moduli ITk
 - Sviluppato dalla collaborazione RD53, questi chip sono in comune ad ATLAS e CMS
 - ITkPixV1.1: non consente l'utilizzo della Time Over Threshold (ToT)
 - ITkPixV2: finalizzato lo scorso 22 Marzo, sarà impiegato su moduli dal 2024
- Le principali caratteristiche di ITkPixV1:
 - $\circ~65$ nm CMOS, area 2 x 2 cm^2
 - 384 x 400 pixels (50 x 50 µm²)
 - Potenza: 0.56 W/cm²

13/04/23

- Resistenza alla radiazione > 1 Grad
- Soglia: 1000e (30e di dispersione)
- Rumore: 40e (80e) solo FE (dopo il bump-bonding)

Il sensore a pixel con tecnologia 3D

- ATLAS ITk adopera pixel 3D con celle di due dimensioni nel LO:
 - $\circ~25~x~100~\mu m^2$ nel barrel
 - 50 x 50 µm² nell'endcap
- La produzione dei sensori è affidata a
 - FBK e SINTEF (50 x 50 µm²)
 - CNM (25 x 100 µm², FBK in caso di bisogno)
- La pre-produzione è quasi completa:
 - FBK: 50 x 50 μm² (estate 2021), 25 x 100 μm² (estate 2022)
 - SINTEF: 50 x 50 µm² (Febbraio 2022)
 - $\circ~$ CNM: 25 x 100 μm^2 (Marzo 2023), in fase di test

13/04/23

UNIVERSITÀ DI GENOVA

3D FBK 50x50 + ITkPixV1.1 su SCC

- 8 Single Chip Card (SCC) sono state assemblate a Genova con moduli composti da sensori 3D FBK e ITkPixV1.1 chip
 - Il bump-bonding tra sensore e chip è stato effettuato presso IZM;
 - Le SCC sono quindi state qualificate in termini di resistenza alle radiazioni e performance.

Sensor #	TB facility pre-irradiation	Irradiated at	Fluenza	TB facility Post-irradiation	Note
W12-G (SCC2)	CERN PS & SPS	IRRAD	up to 1.7 x 10 ¹⁶ n _{eq} /cm ²	-	FE damaged
W12-M (SCC3)		Bonn + IRRAD	up to 1.9 x 10 ¹⁶ n _{eq} /cm ²	SPS	
W12-N (SCC4)	CERN PS & SPS				Used as RF
W12-J (SCC5)		Bonn + IRRAD	up to 1.9 x 10 ¹⁶ n _{eq} /cm ²	SPS	

Ulteriori 2 SCC irraggiate a CYRIC a 1.5 x 10¹⁶ n_{eq}/cm² (SCC6-10) da testare a Maggio presso SPS

UNIVERSITÀ DI GENOVA

Campagne di TB presso PS & SPS al CERN

- Sono state effettuate una serie di campagne di test su fascio nel 2022:
 - Proton Synchrotron (PS): Aprile 2022;
 - Super Proton Synchrotron (SPS): Maggio, Luglio, Novembre 2022;
 - Il setup è composto di un telescopio a 6 piani (Mimosa26) nel mezzo del quale viene posizionato il Detector Under Test (DUT)
 - L'analisi dei dati è stata condotta attraverso il framework Corryvreckan
- L'efficienza del sensore è stata calcolata come segue:
 - Le tracce sono ricostruite con il telescopio;
 - Il pixel è considerato efficiente se ha una hit in una finestra spaziale e temporale in coincidenza con la traccia nei piani;
 - Non considerati nel calcolo dell'efficienza i pixel rumorosi (occupanza di rumore > 10⁻⁶).

1 3 / 0 4 / 2 3

13/04/23

Efficienza dei moduli 3D non irraggiati

- I moduli non irraggiati sono stati testati sia presso PS che SPS:
 - PS: fascio di protoni a 12 GeV
 - SPS: fascio di pioni a 120 GeV
 - I moduli erano posti perpendicolarmente alla direzione del fascio:
 - Efficienza media = 98.7 ± 0.1% già a 0 V di voltaggio di bias
 - Efficienza media = $98.9 \pm 0.1\%$ a 10 V di voltaggio di bias
 - I risultati sono compatibili con quelli ottenuti sui prototipi RD53A con sensori FBK 50 x 50 µm² precedentemente testati a DESY (elettroni a 6 GeV).

Efficienza locale moduli 3D non irraggiati

- L'efficienza locale per la singola cella dei pixel (moduli perpendicolari al fascio):
 - Nell'area centrale: efficienza oltre il 99%
 - $\circ~$ Le colonne n⁺ sono ad una distanza di 25 μm dal bordo
 - Efficienza ~99% sulle colonne n⁺

13/04/23

- Efficienza visibilmente più bassa negli angoli
 - Effetto decresce allontanandosi dal centro della colonna p⁺: efficienza 75-99% in un raggio di 10 µm
 - $\,\circ\,$ Le colonne p+ hanno un raggio di 4 μm

13/04/23

UNIVERSITÀ DI GENOVA

Efficienza dei moduli 3D dopo primo irraggiamento

- Due moduli irraggiati a Bonn:
 - Fluenza uniforme $\phi = 1 \times 10^{16} n_{eq}/cm^2$
 - Testati sia perpendicolarmente ($\theta = 0^{\circ}$) che ruotati ($\theta = 15^{\circ}$) rispetto al fascio
 - Efficienza media > 97% a 40 V di voltaggio di bias

- Efficienza locale dei pixel
 - Con θ = 0° i risultati a quelli ottenuti con i moduli non irraggiati e l'efficienza è minore nella regione delle
 - Con θ = 15° l'efficienza del pixel diventa omogenea

UNIVERSITÀ DI GENOVA

Efficienza dopo il secondo irraggiamento

- Il secondo irraggiamento è stato effettuato presso il CERN ad IRRAD.
 - I moduli irraggiati erano precedentemente stati irraggiati a Bonn
 - $\circ~$ La fluenza non risulta uniforme ed ha un valore massimo di 1.9 x 10^{16} n_{eq}/cm^2
 - Nella zona coperta dagli scintillatori i moduli hanno una fluenza media di 1.7 x 10^{16} n_{eq}/cm²
 - I moduli sono stati testati perpendicolarmente al fascio ($\theta = 0^{\circ}$)
 - L'efficienza media è di ~97% a 100 V di voltaggio di bias

13/04/23

UNIVERSITÀ DI GENOVA

Efficienza locale dopo il secondo irraggiamento

- I pixel sono stati raggruppati in due intervalli di fluenza ricevuta:
 - Primo range di fluenza $1.50 < \phi < 1.75 \times 10^{16} n_{eq}/cm^2$ fluenza media = $1.65 \times 10^{16} n_{eq}/cm^2 \pm 3 \%$
 - Secondo range di fluenza $1.75 < \varphi < 1.90 \times 10^{16} n_{eq}/cm^2$ fluenza media = $1.78 \times 10^{16} n_{eq}/cm^2 \pm 3 \%$

13/04/23 IFAE 2023-NUOVE TECNOLOGIE

UNIVERSITÀ DI GENOVA

Efficienza locale dopo il secondo irraggiamento

- I pixel sono stati raggruppati in due intervalli di fluenza ricevuta:
 - Primo range di fluenza $1.50 < \phi < 1.75 \times 10^{16} n_{eq}/cm^2$ fluenza media = $1.65 \times 10^{16} n_{eq}/cm^2 \pm 3 \%$
 - Secondo range di fluenza $1.75 < \varphi < 1.90 \times 10^{16} n_{eq}/cm^2$ fluenza media = $1.78 \times 10^{16} n_{eq}/cm^2 \pm 3 \%$

1 3 / 0 4 / 2 3

UNIVERSITÀ DI GENOVA

Efficienza locale dopo il secondo irraggiamento

- I pixel sono stati raggruppati in due intervalli di fluenza ricevuta:
 - Primo range di fluenza $1.50 < \varphi < 1.75 \times 10^{16} n_{eq}/cm^2$ fluenza media = $1.65 \times 10^{16} n_{eq}/cm^2 \pm 3 \%$
 - Secondo range di fluenza $1.75 < \varphi < 1.90 \times 10^{16} n_{eq}/cm^2$ fluenza media = $1.78 \times 10^{16} n_{eq}/cm^2 \pm 3 \%$

UNIVERSITÀ DI GENOVA

Efficienza locale dopo il secondo irraggiamento

- I pixel sono stati raggruppati in due intervalli di fluenza ricevuta:
 - Primo range di fluenza $1.50 < \varphi < 1.75 \times 10^{16} n_{eq}/cm^2$ fluenza media = $1.65 \times 10^{16} n_{eq}/cm^2 \pm 3 \%$
 - Secondo range di fluenza $1.75 < \varphi < 1.90 \times 10^{16} n_{eq}/cm^2$ fluenza media = $1.78 \times 10^{16} n_{eq}/cm^2 \pm 3 \%$

Proiezione dell'efficienza della cella del 3D pixel

- La proiezione della riga centrale della mappa di efficienza locale per i versi voltaggi di bias e fluenze.
 - L'efficienza è minore nei pixel che hanno ricevuto una maggior fluenza
 - A 120 V di voltaggio di bias la differenza diventa non significativa tra i diversi range di fluenza
 - A bias bassi (< 120 V) si nota una parziale inefficienza nella zona centrale della cella (colonna n+)

1 3 / 0 4 / 2 3

Proiezione dell'efficienza della cella del 3D pixel

- La proiezione della riga centrale e della riga superiore della mappa di efficienza locale per i versi voltaggi di bias.
 - Nella proiezione della riga superiore si notano le aree a minor efficienza dovute alle colonne p⁺ anche a 120 V
 - A 120 V di voltaggio di bias la zona centrale della cella è totalmente svuotata
 - La minore efficienza nella zona centrale del bordo è dovuta al minore campo elettrico in quella regione

1 3 / 0 4 / 2 3

Conclusioni

13/04/23

- Il rivelatore ATLAS ITk sarà equipaggiato di moduli a pixel con sensori 3D nel suo strato più interno.
- I moduli 3D assemblati presso Genova (ITkPixV1.1 + 3D FBK 50x50 μm²):
 - Sono stati testati prima dell'irraggiamento presso PS e SPS al CERN
 - Efficienza > 98% già a 0 V di voltaggio di bias.
 - Efficienza locale > 99% nella regione centrale.
 - Efficienza più bassa nelle regioni dei corner.
 - Successivamente irradiati fino a 1.9 x 10¹⁶ n_{eq}/cm² (non uniformemente) presso Bonn e IRRAD e testati presso SPS al CERN
 - Efficienza media > 97% raggiunta a ~110 V con una fluenza media di ~1.78 x $10^{16} n_{eq}/cm^2$
 - Effetti visibili nelle regioni delle colonne p⁺, ma l'effetto è stato rimosso inclinando i DUT di 15° rispetto alla linea del fascio
 - La cella del pixel è completamente svuotata ad un voltaggio di bias > 120 V
- Questi risultati hanno validato la pre-produzione e permesso l'inizio della produzione.
- Siamo pronti per una nuova campagna di test presso SPS che inizierà alla fine di Aprile con altri moduli 50x50 μm² irraggiati e i nuovi moduli 25x100 μm²!

GRAZIE PER L'ATTENZIONE

13/04/23

Backup slides

13/04/23

ITk Pixel layout

13/04/23

UNIVERSITÀ DI GENOVA

Moduli ITk Pixel

- Sensori Planari:
 - Tecnonlogia n+-in-p
- Sensori 3D:
 - Colonne n⁺ and p⁺ impiantate verticalmente in un substrato attivo drogato p
 - Minore è la distanza tra gli elettrodi, minore è la distanza che le cariche/holes devono percorrere
 - Minore probabilità di intrappolamento della carica
 - Aumentata la resistenza alle radiazioni: i sensori possono operare anche dopo 1 x 10^{16} n_{eq}/cm^2
 - Minore voltaggio di deplezione
- I sensori planari sono montati su quad-modules: 1 bare module (4 chip + 1 sensore planare) + un PCB flessibile
- I sensori 3D sono montati su tripletti: 3 bare modules (1 chip+ 3 sensori) + un PCB flessibile

1 3 / 0 4 / 2 3

UNIVERSITÀ DI GENOVA

Secondo irraggiamento presso IRRAD

Aluminum foil

- A IRRAD sono stati irraggiati non uniformemente fino a 0.9 x 10^{16} n_{eq}/cm² con un valore medio di 0.5 x 10^{16} n_{eq}/cm²
- I moduli sono stati posti inclinati così da massimizzare l'area esposta al fascio che è stato deliverato sul sensore con uno scan orizzontale.
- La fluenza ricevuta è stata misurata dall'attivazione del foglio di alluminio con un dosimetro

• Fluenza integrata totale:

13/04/23

- \circ 1.9 x 10¹⁶ n_{eq}/cm² nel picco
- $\circ~~1.5 \ x \ 10^{16} \ n_{eq}/cm^2$ di media
- La fluenza è stata mappata misurando i diversi valori di fluenza

IFAE 2023-NUOVE TECNOLOGIE

SCC5 SCC3

13/04/23

Strategia di tuning della threshold

- Le SCC testate durante il testbeam sono state tunate ad un valore target di 1000e a 100 V di voltaggio di bias e lo stesso tuning è stato usato per tutti i voltaggi.
- La distribuzione della threshold e del noise in funzione della tensione è risultata accettabilmente stabile su tutto il range di voltaggi

• Le barre di errore sono l'errore del valore medio della distribuzione, mentre le colonne corrispondono alla deviazione standard della distribuzione.

Finestra di operabilità

- La finestra di operabilità è definita come range di voltaggi nel quale si ha contemporaneamente il valore di efficienza superiore al 97% mentre si è sotto alla tensione di breakdown: ~100 V - ~150 V di voltaggio di bias
- La corrente di leakage I ~150 µA/cm² e la potenza dissipata 15 mW/cm² a 100 V bias (riscalata a -25°C) per SCC3

Finestra di operabilità

- È stato osservato che il numero di pixel noisy/disabilitati cresce con il voltaggio.
 - Lo stesso tuning (threshold target 1000e a 100 V bias) è stato usato per tutti i valori di tensione. Si potrebbe forse ridurre questo fenomeno ri-tunando il modulo ad ogni voltaggio.
- È stato studiato il numero di pixel disabilitati tramite analog-scan a diversi valori di voltaggio di baias:
 - C'è una crescita lenta di circa il 3% di pixel che vengono mascherati fino a ~150 V
 - Dopo di che il numero di pixel mascherati aumenta velocemente quando si entra nella regione di breakdown
- La finestra di operabilità in questo caso corrisponde al voltaggio in cui contemporaneamente l'efficienza del modulo è superiore al 97% e la frazione di failing pixel è bassa: ~100 V - ~160 V bias.

UNIVERSITÀ DI GENOVA

Simulazione del campo elettrico

- È stato simulato il campo elettrico dopo l'irraggiamento (più informazioni in <u>ITk_Public_Plots</u>)
- In questo plot viene rappresentato il campo a V = -140V dopo l'irraggiamento a $1.0 \times 10^{16} n_{eq}/cm^2$
- Il campo elettrico minore potrebbe essere associato con una bassa efficienza, almeno quando siamo a bassa tensione