IFAE 2023 Incontri di Fisica delle Alte Energie

Test del Modello Standard ad alte energie: l'angolo di mixing debole

Clara Lavinia Del Pio Università di Pavia - INFN Pavia

arXiv:2302.10782 [hep-ph] S. Amoroso, M. Chiesa, E. Lipka, F. Piccinini, F. Vazzoler, A. Vicini

Test del Modello Standard...

Fisica oltre il Modello Standard: la duplice via

Il MS sembra descrivere bene la realtà... e ora?

- Test di consistenza della teoria
- Ricerca di possibile fisica oltre il Modello Standard

Effetti indiretti (virtuali)

Clara Del Pio - IFAE 2023

Fit elettrodebole globale

Un successo dalla storia

Fit globale delle previsioni del Modello Standard sui dati

Predizione di parametri a LEP, es. massa del bosone di Higgs e del quark top

Test di precisione a LHC

Fisica di precisione ai collider adronici

Anche ai collider adronici è possibile la fisica di precisione

Esempi da questa sessione

misura delle proprietà del bosone di Higgs; o del quark top → G. Guerrieri misura della massa del bosone W → D. Zuliani

Dal lato teorico

Sviluppo del calcolo perturbativo per contributi da ordini superiori Simulazione Monte Carlo di precisione da confrontarsi con i dati

> Erler, J., Schott, M., Progr. in Part. and Nucl. Phys. 106 (2019) 68-119

...con l'angolo di mixing debole

L'angolo di mixing debole

Definizioni

 ± 0.00004

0.23155

Effective angle

 \bar{f}

L'angolo di mixing debole

Determinazione diretta di $\sin^2 \theta_{eff}$ alle macchine adroniche

La direzione del patrone entrante non è nota - sensibilità maggiore a grandi $|y_{\ell\bar{\ell}}|$ - necessario il sistema di riferimento di Collins-Soper - delicato trattamento delle PDF

Lavori in corso nel LHC EWWG per quantificare incertezze e problemi teorici nell'estrazione di $\sin^2 \theta_{eff}^f$ (EW precision measurement subgroup)

Il running di $\sin^2 \theta_w^{\overline{MS}}(\mu)$

Il punto di questo talk

Il running di $\sin^2 \theta_w^{\overline{MS}}(\mu)$

Il punto di questo talk

and Nucl. Phys. 106 (2019) 68-119

II running in POWHEG

Implementazione del running NLO nel Monte Carlo

Chiesa, M., CD, Piccinini, F., in preparation

Implementazione NLO del running delle costanti di accoppiamento nel pacchetto Z_EW-BMNNPV di POWHEG-BOX-V2, produzione di eventi LHE

Barzé, L., et al., Eur. Phys. J. C 73 (6) (2013) 2474

II running in POWHEG

Implementazione del running NLO nel Monte Carlo

Chiesa, M., CD, Piccinini, F., in preparation

Implementazione NLO del running delle costanti di accoppiamento nel pacchetto Z_EW-BMNNPV di POWHEG-BOX-V2, produzione di eventi LHE

Barzé, L., et al., Eur. Phys. J. C 73 (6) (2013) 2474

schema di rinormalizzazione usato è "ibrido" ($\alpha(\mu)$, $\sin^2 \theta_w^{\overline{MS}}(\mu)$, M_Z)

avere $\sin^2 \theta_w^{\overline{MS}}(\mu)$ in input ne permette una determinazione diretta consistente a NLO nel Modello Standard

II running in POWHEG

Implementazione del running NLO nel Monte Carlo

Chiesa, M., CD, Piccinini, F., in preparation

Implementazione NLO del running delle costanti di accoppiamento nel pacchetto Z_EW-BMNNPV di POWHEG-BOX-V2, produzione di eventi LHE

Barzé, L., et al., Eur. Phys. J. C 73 (6) (2013) 2474

schema di rinormalizzazione usato è "ibrido" ($\alpha(\mu), \sin^2 \theta_w^{\overline{MS}}(\mu), M_Z$)

avere $\sin^2 \theta_w^{\overline{MS}}(\mu)$ in input ne permette una determinazione diretta consistente a NLO nel Modello Standard

ordini superiori nel running disponibili come opzioni nel codice

Erler, J., Ramsey-Musolf, M. J., Phys. Rev. D 72 (2005) 073003

possibilità di disaccoppiare W e top e di accendere/spegnere le correzioni di soglia in corrispondenza delle masse di W e top

Strategia di analisi

Studio di sensibilità

• Osservabile usata:

 $\mathrm{d}^3\sigma$

 $\overline{\mathrm{dm}_{\ell\ell}\mathrm{d}y_{\ell\ell}\mathrm{d}\cos\theta_{CS}}$

- 2 scenari: Run 3 (300 fb⁻¹) e HL-LHC (3000 fb⁻¹)
- $m_{\ell\bar{\ell}}$: [116, 150, 200, 300, 500, 1500, 5000] GeV $|y_{\ell\bar{\ell}}|$: [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.5] 2 bin in $\cos \theta_{CS}$ per le direzioni in avanti/indietro
- Selezione fiduciale per scenario realistico p_T^ℓ > 40 (30) GeV, $|\eta_\ell|$ < 2.5
- Disaccoppiamento, nessuna correzione di soglia nel running Schema a masse complesse per trattare risonanza
- 10⁹ eventi a NLOQCD+NLOEW+PS
- NPDF31_nnlo_as_0118_hessian PDF con $\mu_R = \mu_F = m_{\ell\bar{\ell}}$
- Simulazione del detector con efficienze e risoluzioni leptoniche in RIVET

ATLAS Collab., Eur. Phys. J. C 79 (8) (2019) 639 ATLAS Collab., http://cds.cern.ch/record/2047831 Buckley, A., et al., Comput. Phys. Commun. 184 (2013) 2803-2819

Clara Del Pio - IFAE 2023

CMS Collab., Eur. Phys. J. C 78 (9) (2018) 701

Sjöstrand, T., et al., Comput. Phys. Commun. 191 (2015) 159-177 Denner, A., et al., Nucl. Phys. B Proc. Suppl. 160 (2006) 22-26 Ball, R. D., et al., Eur. Phys. J. C 77 (10) (2017) 663

Strategia di fit

Studio di sensibilità II

- Template assumendo running del MS per $\alpha^{\overline{MS}}(\mu)$ $\sin^2 \theta_w^{\overline{MS}}(\mu = \hat{m}_{\ell \bar{\ell}}) \pm 0.01$
- $\delta \sin^2 \theta_w^{\overline{MS}}(\mu)$ in ogni bin di $m_{\ell \bar{\ell}}$ nel fit (xFitter) con approx lineare Alekhin, S., et al., Eur. Phys. J. C 75 (7) (2015) 304
- incertezze incluse come parametri di nuisance

$m^{\rm lo}_{\ell\ell}~[{\rm GeV}]$	$m^{hi}_{\ell\ell}~[GeV]$	$\hat{m}_{\ell\ell} \; [GeV]$	$(\alpha_{\rm EM}^{\overline{\rm MS}}(\hat{\rm m}_{\ell\ell}))^{-1}$	$\sin^2\theta_W^{\overline{\mathrm{MS}}}(\hat{\mathrm{m}}_{\ell\ell})$
66	116	m_{Z}	127.951	0.23122
116	150	133	127.838	0.23323
150	200	175	127.752	0.23468
200	300	250	127.544	0.23648
300	500	400	127.269	0.23885
500	1500	1000	126.735	0.24350
1500	5000	3250	126.047	0.24954

Risultati

Proiezioni sulla misura

In breve

Grazie per l'attenzione... Domande?

Studio di sensibilità dei dati di LHC al running di $\sin^2 \theta_w$ a NLO a alta energia, che rappresenta un test cruciale per il Modello Standard

Codice Monte Carlo con $\sin^2 \theta_w^{\overline{MS}}(\mu)$ in input ne permette la determinazione diretta a NLO ai collider adronici

LHC e HL-LHC potrebbero misurare il running di $\sin^2 \theta_w$ con una precisione di qualche % fino a 3 TeV, assumendo SM running per $\alpha(\mu)$

Incertezza grande dovuta alle PDF - ridotta in fit di PDF futuri

Prossimo step: estensione dell'analisi includendo altre osservabili