IFAE 2023 Incontri di Fisica delle Alte Energie

Catania, Aprile 2023

[English version below]

Studio di sensibilità di processi di produzione tribosonica ad operatori EFT di dimensione 6

Tratto da arXiv:2303.18215v1 [hep-ph] 31 Mar 2023

Cristiano Tarricone^(a,b)

^(a)INFN - Sezione di Torino ^(b)Università degli Studi di Torino

Introduzione

Processi di produzione tribosonica

- Produzione tribosonica da urti protone-protone a 13 TeV
 - processi rari predetti dal
 Modello Standard

– Diagrammi di Feynman inclusi nei canali $VZ\gamma/VZZ$

Introduzione Processi di produzione tribosonica Produzione tribosonica da urti * La simulazione Montecarlo non vincola gli protone-protone a 13 TeV stati tribosonici intermedi processi rari predetti dal \succ **Modello Standard** Ogni **fondo** con la stessa segnatura sperimentale è **incluso** Z/γ (ma **soppresso** dalla WZγ ZZy selezione cinematica) $pp(\rightarrow WZ\gamma) \rightarrow \mu^{\pm} (v) e^{+}e^{-}\gamma$ $pp(\rightarrow ZZ\gamma) \rightarrow \mu^{+}\mu^{-}e^{+}e^{-}\gamma$ VZy VZZ

– Diagrammi di Feynman inclusi nei canali $VZ\gamma/VZZ$

 Z/γ

 $pp(\rightarrow \mathrm{VZ}\gamma) \rightarrow jj'\,l^+l^-\gamma$

 $pp(\rightarrow \mathrm{VZZ}) {\rightarrow} jj'\,\mu^+\mu^-e^+e^-$

Aprile 2023

7/0

Introduzione

Processi di produzione tribosonica

- Produzione tribosonica da urti protone-protone a 13 TeV
 - processi rari predetti dal
 Modello Standard

WZY	ZZγ		
$pp \rightarrow WZ\gamma \rightarrow \mu^{\pm} {}^{(}\bar{\nu}^{)}_{\mu} e^{+}e^{-}\gamma$	$pp \to ZZ\gamma \to \mu^+\mu^-e^+e^-\gamma$		
VZγ	VZZ	\vec{q}'	\bar{q}' W
$pp \rightarrow VZ\gamma \rightarrow jj^{\prime} l^{+}l^{-}\gamma$	$pp \rightarrow VZZ \rightarrow jj' \mu^+\mu^- e^+e^-$	$z = Z/\gamma$	

– Diagrammi di Feynman inclusi nei canali $VZ\gamma/VZZ$

Introduzione Processi di produzione tribosonica

- Produzione tribosonica da urti protone-protone a 13 TeV
 - processi rari predetti dal
 Modello Standard
- Test fondamentale del settore elettrodebole del Modello Standard
 - Accoppiamenti di gauge tripli, quartici e con il bosone di Higgs

– Diagrammi di Feynman inclusi nei canali $VZ\gamma/VZZ$

Introduzione Processi di produzione tribosonica

- Produzione tribosonica da urti protone-protone a 13 TeV
 - processi rari predetti dal
 Modello Standard
- Test fondamentale del settore
 elettrodebole del Modello
 Standard
 - Accoppiamenti di gauge tripli, quartici e con il bosone di Higgs
- Potenziali anomalie che aprirebbero a nuova fisica
 - ≻ studi **SM-EFT**

– Diagrammi di Feynman inclusi nei canali $VZ\gamma/VZZ$

Teorie Efficaci di Campo (EFT) Operatori di dimensione 6

Approccio modello-independente: framework SM-EFT

$$\mathcal{L} = \mathcal{L}_{SM}^{(4)} + \sum_{n,i} \frac{1}{\Lambda^{n-4}} c_i^{(n)} Q_i^{(n)} \qquad \text{Dim. } n > 4$$

Scala di nuova
fisica ($\Lambda = 1 \text{ TeV}$) coefficienti di
Wilson

Effetto di un singolo operatore di dimensione 6, es. Q_{W} :

$$|\mathcal{A}|^2 = \underbrace{|\mathcal{A}_{\mathrm{SM}}|^2}_{\mathrm{SM}} + \underbrace{2 \; \frac{c_W}{\Lambda^2} Re(\mathcal{A}^*_{Q_W} \mathcal{A}_{\mathrm{SM}})}_{\mathrm{Lineare}} + \underbrace{\frac{c_W^2}{\Lambda^4} |\mathcal{A}_{Q_W}|^2}_{\mathrm{Quadratico}}$$

Effetto combinato di coppie di operatori

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})\right)$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Operatori di dim. 6 dalla base di Varsavia [2]

Teorie Efficaci di Campo (EFT) Operatori di dimensione 6

Approccio modello-independente: framework SM-EFT

$$\mathcal{L} = \mathcal{L}_{SM}^{(4)} + \sum_{n,i} \frac{1}{\Lambda^{n-4}} c_i^{(n)} Q_i^{(n)} \qquad \text{Dim. } n > 4$$
Scala di nuova
fisica (\Lambda = 1 TeV) coefficienti di
Wilson

Effetto di un singolo operatore di dimensione 6, es. Q_{W} :

$$|\mathcal{A}|^2 = \underbrace{|\mathcal{A}_{\mathrm{SM}}|^2}_{\mathrm{SM}} + \underbrace{2 \; \frac{c_W}{\Lambda^2} Re(\mathcal{A}^*_{Q_W} \mathcal{A}_{\mathrm{SM}})}_{\mathrm{Lineare}} + \underbrace{\frac{c_W^2}{\Lambda^4} |\mathcal{A}_{Q_W}|^2}_{\mathrm{Quadratico}}$$

Effetto combinato di coppie di operatori

ſ		X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$				
	Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$		$Q_{e\varphi}$	(4	$(\bar{l}_p e_r)$	$\varphi)$	
	$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$		$Q_{u\varphi}$	(4	$(\bar{q}_p u_r)(\bar{q}_p u_r)$	$\widetilde{\varphi}$)	
	Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$)	$Q_{d\varphi}$	(4	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		
	$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
		$X^2 \varphi^2$		$\psi^2 X \varphi$			ψ^2	$\varphi^2 D$		
	$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$				(1)		↔ _		
	$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$		$\begin{array}{l} \text{Operators} \rightarrow \\ \downarrow \text{Processes} \end{array}$		Q_W	Q_{HB}	Q_{HW}	Q_{HWB}	Q_{HD}
	$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$								
	$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$		$\mathbf{WZ}\gamma$		1	1	1	1	1
	$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$		$\mathbf{Z}\mathbf{Z}\gamma$			1	1	1	1
	$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\overline{B}_{\mu u}B^{\mu u}$								
	$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	1	$\mathbf{VZ}\gamma$		/	1	1	1	1
	$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$		VZZ		1		1	1	1

Operatori di dim. 6 studiati dalla base di Varsavia [2]

Analisi delle distribuzioni

Effetto di un singolo operatore

Esempi di variabili di interesse particolarmente sensibili e delle corrispondenti distribuzioni di eventi attese a partire dal Modello Standard e aggiungendo le componenti EFT, per i canali totalmente leptonici WZγ e ZZγ

Incontri di Fisica delle Alte Energie

Analisi delle distribuzioni

Effetto di un singolo operatore

Esempi di variabili di interesse particolarmente sensibili e delle corrispondenti distribuzioni di eventi attese a partire dal Modello Standard e aggiungendo le componenti EFT, per i canali totalmente leptonici $WZ\gamma$ e $ZZ\gamma$

Cristiano Tarricone

Incontri di Fisica delle Alte Energie

Aprile 2023

Analisi delle distribuzioni

Effetto di un singolo operatore

Esempi di variabili di interesse particolarmente sensibili e delle corrispondenti distribuzioni di eventi attese a partire dal Modello Standard e aggiungendo le componenti EFT, per i canali totalmente leptonici WZγ e ZZγ

Cristiano Tarricone

Incontri di Fisica delle Alte Energie

Aprile 2023

Conseguenza:

asimmetria evidente

Analisi delle distribuzioni

Effetto di un singolo operatore

Esempi di variabili di interesse particolarmente sensibili e delle corrispondenti distribuzioni di eventi attese a partire dal Modello Standard e aggiungendo le componenti EFT, per i canali totalmente leptonici WZγ e ZZγ

Cristiano Tarricone

Incontri di Fisica delle Alte Energie

Aprile 2023

Limiti sui singoli coefficienti

Cristiano Tarricone

Aprile 2023

Limiti sui singoli coefficienti

Cristiano Tarricone

Incontri di Fisica delle Alte Energie

Aprile 2023

Limiti sui singoli coefficienti

Cristiano Tarricone

Incontri di Fisica delle Alte Energie

Aprile 2023

Aree di confidenza 2D

Esempi di **contorni** delle **aree di esclusione** al 68 % C.L. per coppie di coefficienti di Wilson

[matrice completa {Qi,Qi}]

Aree di confidenza 2D

Esempi di **contorni** delle **aree di esclusione** al 68 % C.L. per coppie di coefficienti di Wilson

Aree di confidenza 2D $\begin{aligned} |\mathcal{A}|^2 &= |\mathcal{A}_{\rm SM}|^2 + 2\sum_i \frac{c_i}{\Lambda^2} Re(\mathcal{A}_{Q_i}^* \mathcal{A}_{\rm SM}) + \\ &+ \sum_{i \neq j} \frac{c_i c_j}{\Lambda^j} e(\mathcal{A}_{Q_i}^* \mathcal{A}_{Q_j}) + \sum_i \frac{c_i^2}{\Lambda^4} |\mathcal{A}_{Q_i}|^2 \end{aligned}$ $\Lambda = 1 \text{ TeV}, L = 300 \text{ fb}^{-1}$ (13 TeV) C_{HW} Preliminary 1.5 $\phi^{\dagger}\phi W^{I}_{\mu\nu}W^{I\mu\nu}$ Esempi di **contorni** delle aree di esclusione al Mixed interference $\rightarrow 0$ 68 % C.L. per coppie di 0.5 Combined coefficienti di Wilson Termine di mutua ZZγ interferenza: VZγ -0.5 Responsabile della $Q_{\phi W}$ WZγ correlazione fra le stime VZZ dei coefficienti -1 -0.5 0.5 Cw $\Lambda = 1 \text{ TeV}, L = 300 \text{ fb}^{-1}$ (13 TeV) $\Lambda = 1 \text{ TeV}, L = 300 \text{ fb}^{-1}$ (13 TeV) ى[∰] 1.5 $Q_W - Q_{HB(W)}$ Preliminary $B_{\mu \nu}B^{\mu \nu}$ Mutua interferenza trascurabile 0.5 φ†φ. $Q_{HB}-Q_{HW}$ Contorno: -0.5 Forma ellittica Ruolo rilevante $Q_{\phi B}$ centrata e simmetrica -0.5 0.5 -1 0 Cw C_{HW} $Q_W = \epsilon^{IJK} W^{I\, u}_\mu W^{J\, ho}_ u W^{K\,\mu}_o$ $Q_{\phi W} = \phi^{\dagger} \phi \, W^{I}_{\mu\nu} W^{I\mu\nu}$ matrice completa {Oi,Oi}

Fit globale Limiti profilati

Confronto tra i limiti attesi profilati e individuali sui coefficienti di Wilson dalla combinazione dei canali $VZZ/VZ\gamma$

Fit globale Limiti profilati

Confronto tra i limiti attesi profilati e individuali sui coefficienti di Wilson dalla combinazione dei canali VZZ/VZ γ

Fit globale Limiti profilati

Confronto tra i limiti attesi profilati e individuali sui coefficienti di Wilson dalla combinazione dei canali $VZZ/VZ\gamma$

Conclusioni

- Contraction de la contractio
 - > limiti molto competitivi!
 - > ruolo fondamentale della combinazione delle diverse analisi
- Prospettive future nel contesto delle EFT:
 - > combinazione di analisi dibosoniche e tribosoniche
 - ➤ combinazione effetti di operatori di dim. 6 e dim. 8
 - ➤ studi a livello ricostruito

Bibliografia

- 1. R. Bellan et al., A sensitivity study of triboson production processes to dimension-6 EFT operators at the LHC, arXiv preprint <u>arXiv:2303.18215</u> (2023).
- 2. B. Grzadkowski et al. Dimension-six terms in the Standard Model Lagrangian. Journal of High Energy Physics, <u>2010(10):1–18</u>, 2010
- 3. R. Bellan et al., A sensitivity study of VBS and diboson WW to dimension-6 EFT operators at the LHC, <u>10.1007/JHEP05(2022)039</u>.
- 4. C. Degrande et al., Effective Field Theory: a modern approach to anomalous couplings, <u>10.1016/j.aop.2013.04.016</u>
- 5. I. Brivio, SMEFTsim 3.0 a practical guide. <u>JHEP, 04:073, 2021</u>.

IFAE 2023 Incontri di Fisica delle Alte Energie

Catania, Aprile 2023

A sensitivity study of triboson production to dimension-6 EFT operators

Based on arXiv:2303.18215v1 [hep-ph] 31 Mar 2023

Cristiano Tarricone^(a,b)

^(a)INFN - Sezione di Torino ^(b)Università degli Studi di Torino

Introduction

Triboson production processes

- Triboson production from p-p scatterings at 13 TeV
 - processes predicted by the
 Standard Model (SM) to be
 extremely rare

– Main Feynman diagrams involved in the $VZ\gamma/VZZ$ channel

Introduction

Triboson production processes

- Triboson production from p-p scatterings at 13 TeV
 - processes predicted by the
 Standard Model (SM) to be
 extremely rare

WZγ	ZZγ
$pp \rightarrow WZ\gamma \rightarrow \mu^{\pm} {}^{(-)}_{\nu_{\mu}} e^{+}e^{-}\gamma$	$pp \to ZZ\gamma \to \mu^+\mu^-e^+e^-\gamma$
VZγ	VZZ
$pp \rightarrow VZ\gamma \rightarrow jj^{,}l^{+}l^{-}\gamma$	$pp \rightarrow VZZ \rightarrow jj' \mu^+\mu^- e^+e^-$

– Main Feynman diagrams involved in the $VZ\gamma/VZZ$ channel

Introduction

Triboson production processes

- Triboson production from p-p scatterings at 13 TeV
 - processes predicted by the
 Standard Model (SM) to be
 extremely rare

WZγ	ZZγ
$pp(\rightarrow \mathbb{WZ}\gamma) \rightarrow \mu^{\pm} (\bar{v}_{\mu}) e^{+}e^{-}\gamma$	$pp(\rightarrow \mathbb{Z}\mathbb{Z}\gamma) {\rightarrow} \mu^{+}\mu^{-}e^{+}e^{-}\gamma$
VZγ	VZZ
$pp(\rightarrow \mathrm{VZ}\gamma) {\rightarrow} jj' l^+l^-\gamma$	$pp(\rightarrow \mathbb{VZZ}) \rightarrow jj'\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$

– Main Feynman diagrams involved in the $VZ\gamma/VZZ$ channel

Introduction Triboson production processes

- Triboson production from p-p scatterings at 13 TeV
 - processes predicted by the
 Standard Model (SM) to be
 extremely rare
- Fundamental test for the electroweak sector of the SM
 - Triple and Quartic Gauge Couplings (TGCs, QGCs), and Higgs-gauge bosons couplings

– Main Feynman diagrams involved in the $VZ\gamma/VZZ$ channel

Introduction Triboson production processes

- Triboson production from p-p scatterings at 13 TeV
 - processes predicted by the
 Standard Model (SM) to be
 extremely rare
- Fundamental test for the electroweak sector of the SM
 - Triple and Quartic Gauge
 Couplings (TGCs, QGCs), and
 Higgs-gauge bosons couplings
- Potentially anomalies in TGCs and QGCs (aTGC, aQGC) may hint to new physics
 - > **SM-EFT** studies

– Main Feynman diagrams involved in the $VZ\gamma/VZZ$ channel

Standard Model-Effective Field Theories Dimension-6 operators

Model-independent approach: SM-EFT framework

$$\mathcal{L} = \mathcal{L}_{SM}^{(4)} + \sum_{n,i} \frac{1}{\Lambda^{n-4}} c_i^{(n)} Q_i^{(n)} \qquad \text{Dim. } n > 4 \text{ op.}$$
New Physics scale
(A set to 1 TeV)
Wilson coefficient

Effect of an individual dimension-6 operator, e.g. Q_W :

$$|\mathcal{A}|^2 = \underbrace{|\mathcal{A}_{\mathrm{SM}}|^2}_{\mathrm{SM}} + \underbrace{2 \; rac{c_W}{\Lambda^2} Re(\mathcal{A}^*_{Q_W} \mathcal{A}_{\mathrm{SM}})}_{\mathrm{Linear}} + \underbrace{rac{c_W^2}{\Lambda^4} |\mathcal{A}_{Q_W}|^2}_{\mathrm{Quadratic}}$$

Further extension to the effects of couple of operators combined

	X^3	φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu \nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu \nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Dim. 6 operators from the Warsaw basis [2]

Standard Model-Effective Field Theories Dimension-6 operators

Model-independent approach: SM-EFT framework

$$\mathcal{L} = \mathcal{L}_{SM}^{(4)} + \sum_{n,i} \frac{1}{\Lambda^{n-4}} c_i^{(n)} Q_i^{(n)} \qquad \text{Dim. } n > 4 \text{ op.}$$
New Physics scale
(A set to 1 TeV)
Wilson coefficient

Effect of an individual dimension-6 operator, e.g. Q_W :

$$|\mathcal{A}|^2 = \underbrace{|\mathcal{A}_{\mathrm{SM}}|^2}_{\mathrm{SM}} + \underbrace{2 \; rac{c_W}{\Lambda^2} Re(\mathcal{A}^*_{Q_W} \mathcal{A}_{\mathrm{SM}})}_{\mathrm{Linear}} + \underbrace{rac{c_W^2}{\Lambda^4} |\mathcal{A}_{Q_W}|^2}_{\mathrm{Quadratic}}$$

Further extension to the effects of couple of operators combined

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$					
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$		$Q_{e\varphi}$	(4	$(\phi^{\dagger}\varphi)(\bar{l}_{p}e_{r})$	$\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$		$Q_{u\varphi}$	(4	$(\bar{q}_p u_r)(\bar{q}_p u_r)$	$\widetilde{\varphi}$)	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$)	$Q_{d\varphi}$	(4	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$				
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$				(1)		↔ _		
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	0	$\begin{array}{l} \text{Operators} \rightarrow \\ \downarrow \text{Processes} \end{array}$		Q_W	Q_{HB}	Q_{HW}	Q_{HWB}	Q_{HD}
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$								
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$		$\mathbf{W}\mathbf{Z}\gamma$		1	1	1	1	1
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$		$\mathbf{Z}\mathbf{Z}\gamma$			1	1	1	1
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\bar{B}_{\mu\nu}B^{\mu\nu}$								
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$		$\mathbf{V}\mathbf{Z}\gamma$		1	1	1	1	1
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$		VZZ		1		1	1	1

Dim. 6 operators under study from the Warsaw basis [1]

Shape analysis

Effects of a single operator

Examples of remarkable variables of interest and the corresponding SM and SM+EFT event distributions for the fully leptonic channels $WZ\gamma$ and $ZZ\gamma$

Shape analysis

Effects of a single operator

Examples of remarkable variables of interest and the corresponding SM and SM+EFT event distributions for the fully leptonic channels $WZ\gamma$ and $ZZ\gamma$

Shape analysis Effects of a single operator

Examples of remarkable variables of interest and the corresponding SM and SM+EFT event distributions for the fully leptonic channels $WZ\gamma$ and $ZZ\gamma$

Consequence:

evident asymmetry

Shape analysis Effects of a single operator

Examples of remarkable variables of interest and the corresponding SM and SM+EFT event distributions for the fully leptonic channels WZ γ and ZZ γ

Cristiano Tarricone

Aprile 2023

1D constraints

Cristiano Tarricone

Aprile 2023

1D constraints

Cristiano Tarricone

Incontri di Fisica delle Alte Energie

Aprile 2023

1D constraints

Cristiano Tarricone

Incontri di Fisica delle Alte Energie

Aprile 2023

2D confidence areas

Examples of **contours** of the 68 % C.L. **exclusion areas** for pairs of operators affecting the channels of interest

2D confidence areas

Examples of **contours** of the 68 % C.L. **exclusion areas** for pairs of operators affecting the channels of interest

2D confidence SM areas $egin{aligned} |\mathcal{A}|^2 &= |\mathcal{A}_{\mathrm{SM}}|^2 + 2\sum_i rac{c_i}{\Lambda^2} Re(\mathcal{A}^*_{Q_i}\mathcal{A}_{\mathrm{SM}}) + \ &+ \sum_{i eq j} rac{c_i c_j}{\Lambda^j} e(\mathcal{A}^*_{Q_i}\mathcal{A}_{Q_j}) + \sum_i rac{c_i^2}{\Lambda^4} |\mathcal{A}_{Q_i}|^2 \end{aligned}$ $\Lambda = 1 \text{ TeV}, L = 300 \text{ fb}^{-1}$ (13 TeV) CHW Preliminary 1.5 $\phi^{\dagger} \phi W^{I}_{\mu\nu} W^{I\mu\nu}$ Examples of **contours** of the 68 % C.L. exclusion Mixed interference $\rightarrow 0$ areas for pairs of 0.5 Combined operators affecting the **Mixed interference** ZZγ channels of interest VZγ -0.5 $Q_{\phi W}$ WZγ VZZ -1 -0.5 0.5 Cw $\Lambda = 1 \text{ TeV}, L = 300 \text{ fb}^{-1}$ (13 TeV) $\Lambda = 1 \text{ TeV}, L = 300 \text{ fb}^{-1}$ (13 TeV) ى[∰] 1.5 Couples $Q_W - Q_{HB(W)}$: Preliminary Preliminary $B_{\mu \nu}B^{\mu \nu}$ Negligible mixed interference 0.5 $\phi^{\dagger}\phi$

-0.5

-1

-0.5

0

 $Q_W = \epsilon^{IJK} W^{I\,
u}_\mu W^{J\,
ho}_
u W^{K\,\mu}_
ho$

0.5

Cw

 $Q_{\phi W} = \phi^{\dagger} \phi \, W^{I}_{\mu
u} W^{I \mu
u}$

 $Q_{\phi B}$

the only responsible of correlation in the estimations Couple Q_{HB} - Q_{HW} : relevant role of the mixed

term:

Contours:

~centered elliptical

shapes

Global fit

Profiled constraints

Profiled fit: All the coefficients (except for the one of interest) floating parameters Unconstrained nuisances with a flat prior

Comparison between profiled and individual expected constraints on the Wilson coefficients from the combination of the leptonic VZZ/VZ γ channels

Cristiano Tarricone

Global fit Profiled constraints

Comparison between profiled and individual expected constraints on the Wilson coefficients from the combination of the leptonic VZZ/VZ γ channels

Global fit Profiled constraints

Comparison between profiled and individual expected constraints on the Wilson coefficients from the combination of the leptonic VZZ/VZ γ channels

Conclusions

- Sirst phenomenological dim.6 EFT study for VZZ/VZγ triboson production processes
 - > very competitive constraints!
 - ➤ fundamental role of combination of the analyses
- Future perspective of EFT studies:
 - \succ detector-level
 - \succ diboson and triboson analyses combination
 - dim. 6 vs dim. 8 operators effects

Thanks for the attention!

References

- 1. R. Bellan et al., A sensitivity study of triboson production processes to dimension-6 EFT operators at the LHC, arXiv preprint <u>arXiv:2303.18215</u> (2023).
- 2. B. Grzadkowski et al. Dimension-six terms in the Standard Model Lagrangian. Journal of High Energy Physics, <u>2010(10):1–18</u>, 2010
- 3. R. Bellan et al., A sensitivity study of VBS and diboson WW to dimension-6 EFT operators at the LHC, <u>10.1007/JHEP05(2022)039</u>.
- 4. C. Degrande et al., Effective Field Theory: a modern approach to anomalous couplings, <u>10.1016/j.aop.2013.04.016</u>
- 5. I. Brivio, SMEFTsim 3.0 a practical guide. <u>JHEP, 04:073, 2021</u>.

OTHER CONTENTS

$WZ\gamma, ZZ\gamma, VZ\gamma$, and VZZ channels

Kinematic selection and variables under study

Process	Variables of interest	Selections			
$\begin{array}{c} \mathbf{VZ}\gamma\\ (pp\rightarrow 2j\ 2l\ \gamma) \end{array}$	$ \begin{array}{ll} m_{ll}, \ m_{jj}, \ p_{T}^{Z}, \ p_{T}^{V}, \ p_{T}^{\gamma}, \ p_{I}^{l_{1}}, \\ p_{T}^{l_{2}}, \ p_{T}^{j_{1}}, \ p_{T}^{j_{2}}, \ \Delta q_{jj}, \ \Delta \phi_{jj}, \ \eta_{j_{1}}, \\ \eta_{j_{2}}, \ \eta_{1}, \ \eta_{2}, \ \phi_{j_{1}}, \ \phi_{j_{2}}, \ \eta^{\gamma}, \ \phi^{\gamma}, \\ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(Z\gamma)}^{l_{2}}, \ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(Z)}^{l_{2}}, \ p_{T(Z)}^{l_{2}}, \\ p_{T(VZ)}^{l_{1}}, \ p_{T(\gamma)}^{l_{2}}, \ p_{T(\gamma)}^{l_{1}}, \ p_{T(\gamma)}^{l_{2}}, \ p_{T(\gamma)}^{l_{2}}, \\ p_{T(\gamma)}^{l_{1}}, \ p_{T(\gamma)}^{l_{2}}, \ p_{T(\gamma)}^{l_{1}}, \ p_{T(\gamma)}^{l_{2}}, \\ p_{T(Z)}^{r_{1}}, \ p_{T(Z)}^{V}, \ p_{T(\gamma)}^{V}, \ p_{T(\gamma)}^{V}, \ p_{T(Z\gamma)}^{V}, \\ p_{T(Z)}^{\gamma}, \ p_{T(Z)}^{V}, \ m_{\ell}^{V}(j), \ H_{\ell}^{x}(ll), \\ H_{\ell}^{x}(2l \ 2j\gamma) \end{array} $	$\begin{array}{l} 50 < m_{jj} < 120 \ {\rm GeV} \\ 60 < m_{ll} < 120 \ {\rm GeV} \\ p_{T,l^1} > 20 \ {\rm GeV} \\ p_{T,l^i} > 5 \ {\rm GeV} \\ p_{T,l^i} > 5 \ {\rm GeV} \\ p_{T,l^i} > 20 \ {\rm GeV} \\ p_{T,j^i} > 20 \ {\rm GeV} \\ p_{T,j^i} > 20 \ {\rm GeV} \\ p_{T,j^{1,2}} > 30 \ {\rm GeV} \\ p_{T,j^{1,2}} > 30 \ {\rm GeV} \\ p_{T,j^{1,2}} > 30 \ {\rm GeV} \\ \Delta R(l^i,\gamma) > 0.4 \\ \Delta R(\gamma,j^k) > 0.4 \end{array}$	WZ γ $(pp \rightarrow 3l \ \nu \ \gamma)$	$\begin{array}{l} \text{Variables of interest} \\ \text{MET, } m_{ll}, m_{T,W}, p_{T}^{Z}, p_{T}^{W}, p_{T}^{\gamma}, \\ p_{T}^{ll}, p_{T}^{l_{1}}, p_{T}^{l_{2}}, p_{T}^{\gamma}, p_{T}^{e^{+}\mu^{+}}, \eta_{l_{1}}, \eta_{l_{2}}, \\ \eta^{\gamma}, \phi^{\gamma}, p_{T(Z\gamma)}^{l_{1}}, p_{T(Z\gamma)}^{l_{2}}, p_{T(Z)}^{l_{1}}, \\ p_{T(Z)}^{l_{2}}, p_{T(WZ)}^{l_{1}}, p_{T(WZ)}^{l_{2}}, p_{T(W)}^{l_{1}}, \\ p_{T(W)}^{l_{2}}, p_{T(WZ)}^{\gamma}, p_{T(Z)}^{W}, p_{T(\gamma)}^{W}, \\ p_{T(WZ)}^{l_{2}}, H_{\ell}^{\chi}(ll), H_{\ell}^{\chi}(3l\nu\gamma) \end{array}$	$\begin{array}{l} \hline \mathbf{Selections} \\ \hline 50 < m_{l\nu} < 110 \ \mathrm{GeV} \\ 60 < m_{ll} < 120 \ \mathrm{GeV} \\ \mathrm{MET} > 30 \ \mathrm{GeV} \\ p_{T,l^1} > 20 \ \mathrm{GeV} p_{T,l^2} > 10 \ \mathrm{GeV} \\ p_{T,l^i} > 5 \ \mathrm{GeV} \eta_{l^i} < 2.5 \\ p_{T,\gamma} > 20 \ \mathrm{GeV} \eta_{\gamma} < 2.5 \\ \Delta R(l^i,\gamma) > 0.4 \end{array}$
$\begin{array}{l} \mathbf{VZZ} \\ (pp \rightarrow 2j \ 4l) \end{array}$	$ \begin{array}{l} m_{ll}, \ m_{jj}, \ m_{4l}, \ m_{4ljj}, \ p_{T}^{Z}, \ p_{T}^{ll}, \\ p_{T}^{j_{1}}, \ p_{T}^{j_{2}}, \ p_{T}^{l_{1}}, \ p_{T}^{l_{2}}, \ p_{T}^{J}, \ p_{T}^{J}, \ p_{T}^{e^{\pm}\mu^{\pm}}, \\ \Delta \eta_{jj}, \ \Delta \phi_{jj}, \ \eta_{j1}, \ \eta_{j2}, \ \eta_{1}, \\ \eta_{l2}, \ \phi_{j1}, \ \phi_{j2}, \ p_{T(ZZ)}^{l_{1}}, \ p_{T(Zz)}^{l_{2}}, \ p_{T(Zz)}^{l_{2}}, \\ p_{T(Zz)}^{j_{1}}, \ p_{T(Zz)}^{j_{2}}, \ p_{T(Zz)}^{l_{1}}, \ p_{T(Zz)}^{l_{2}}, \\ p_{T(Zz)}^{j_{1}}, \ p_{T(Zz)}^{j_{2}}, \ p_{T(Zz)}^{l_{1}}, \ p_{T(Zz)}^{l_{2}}, \\ p_{T(Zz)}^{j_{1}}, \ p_{T(Zz)}^{j_{2}}, \ H_{\ell}^{x}(jj), \ H_{\ell}^{x}(ll), \\ H_{\ell}^{x}(4ljj) \end{array} $	$\begin{array}{l} 50 < m_{jj} < 120 \ {\rm GeV} \\ 60 < m_{ll} < 120 \ {\rm GeV} \\ p_{T,l^1} > 20 \ {\rm GeV} p_{T,l^2} > 10 \ {\rm GeV} \\ p_{T,l^i} > 5 \ {\rm GeV} p_{T,j^{1,2}} > 30 \ {\rm GeV} \\ \eta_{j^i} < 2.5 \eta_{l^i} < 2.5 \\ \Delta R(l^i,j^k) > 0.4 \end{array}$	$\mathbf{ZZ}\gamma$ $(pp \to 4l \ \gamma)$	$ \begin{array}{ll} m_{ll}, \ m_{4l}, \ p_{T}^{Z_{1}}, \ p_{T}^{Z_{2}}, \ p_{T}^{l_{1}}, \ p_{T}^{l_{2}}, \\ p_{ll}^{l}, \ p_{T}^{\gamma}, \ p_{T}^{e^{\pm}\mu^{\pm}}, \ \eta_{l_{1}}, \eta_{l_{2}}, \ \eta^{\gamma}, \ \phi^{\gamma}, \\ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(Z\gamma)}^{l_{2}}, \ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(Z_{1})}^{l_{2}}, \\ p_{T(Z_{2})}^{l_{1}}, \ p_{T(Z\gamma)}^{l_{2}}, \ p_{T(ZZ)}^{l_{1}}, \ p_{T(ZZ)}^{l_{2}}, \\ p_{T(\chi_{2})}^{l_{1}}, \ p_{T(\chi_{2})}^{l_{2}}, \ p_{T(Z)}^{l_{2}}, \ p_{T(Z_{2})}^{l_{2}}, \\ p_{T(\chi_{2})}^{l_{2}}, \ p_{T(\chi_{2})}^{l_{2}}, \ p_{T(Z_{2})}^{l_{2}}, \\ p_{T(\chi_{2})}^{\gamma}, \ H_{\ell}^{k}(ll), \ H_{\ell}^{k}(4l\gamma) \end{array} $	$\begin{array}{l} 60 < m_{ll} <\!$

WZγ	ZZγ	VZγ	VZZ					
$pp \rightarrow WZ\gamma \rightarrow \mu^{\pm}v_{\mu}^{(-)}e^{+}e^{-}\gamma$	$pp \rightarrow ZZ\gamma \rightarrow \mu^+\mu^-e^+e^-\gamma$	pp -> VZγ -> jj' l+l-γ	pp -> VZZ -> jj' µ+µ-e+e-					
60 < m ₁₁ < 120 GeV								
p _T ^{li} >	7							
	$ \eta_{l} < 2$.5						
50 < m _{μν} < 110 GeV MET > 30 GeV	TGCs and QGCs not involved ↓ Q _w has no effect on this channel	50 < m_{jj} < 120 GeV $p_T^{\ j}$ > 30 GeV $ \eta_j $ < 2.5						
	$p_T^{\gamma} > 20 \text{ GeV}$ $ \eta_{\gamma} < 2.5$ $\Delta R_{l\gamma} > 0.4$		No Photons Q_{HB} has no effect on this channel					
No hadron jets ⇒ N	$\Delta R_{j\gamma} > 0.4$	chumici						

Standard Model Effective Field Theories Chasing BSM physics

SM (electroweak) and BSM event distribution as a function of the jets pair invariant mass (VZZ channel)

SM (electroweak + QCD) and BSM event distribution as a function of the jets pair invariant mass (VZZ channel)

SM (electroweak) and BSM event distribution as a function of the jets pair invariant mass (VZZ channel) SM (electroweak + QCD) and BSM event distribution as a function of the jets pair invariant mass (VZZ channel)

Shape analysis

Semi-leptonic channels: Impact of QCD-induced background

 \mathbf{c}_{HB}

 $\mathbf{c}_{\mathrm{HDD}}$

 $\mathbf{c}_{\mathrm{HWB}}$

$$\begin{array}{c} IJK W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \\ = \phi^{\dagger} \phi W_{\mu\nu}^{I} W^{I\mu\nu} \\ \phi^{\dagger} \phi B_{\mu\nu} B^{\mu\nu} \\ = \phi^{\dagger} \tau^{I} \phi W_{\mu\nu}^{I} B^{\mu\nu} \\ = (\phi^{\dagger} D^{\mu} \phi)^{*} (\phi^{\dagger} D_{\mu} \phi) \end{array}$$

- r

300 fb⁻¹ (13 TeV)

 \boldsymbol{c}_{HB}

Preliminary

Preliminary

 \boldsymbol{c}_{HD}

<u>SMEFTsim</u> package for the EFT terms MC generation

$ \eta_j < 2.5$	$p_{Tj} > 30 \ GeV$	$p_{Tl_1}>20GeV$	$60GeV < m_{ll} < 120GeV$	$\Delta B_{L} > 0.4$
$ \eta_l < 2.5$	$p_{Tl} > 5 \ GeV$	$p_{Tl_2}>10GeV$	$50~GeV < m_{jj} < 120~GeV$	$\Delta n_{lj} > 0.4$

<u>SMEFTsim</u> package for the EFT terms MC generation

$ \eta_j < 2.5$	$p_{Tj} > 30 GeV$	$p_{Tl_1}>20GeV$	$60~GeV < m_{ll} < 120~GeV$	$\Delta R_{lj} > 0.4$
$ \eta_l < 2.5$	$p_{Tl}>$ 5 GeV	$p_{Tl_2}>10GeV$	$50GeV < m_{jj} < 120GeV$	0

The Standard Model of Particle Physics

Electroweak Symmetry Breaking

Weak vector bosons **EWSB** consequences * acquire mass Electroweak mixing justified: m_Z^2 residual symmetry $SU(2)_L \times U(1)_Q$ ${\cal L}_B + {\cal L}_H = - {1\over 4} F_{\mu
u} F^{\mu
u} +$ $-rac{1}{2}W^+_{\mu
u}W^{\mu
u}_-+m^2_WW^-_\mu W^\mu_++rac{1}{4}Z_{\mu
u}Z^{\mu
u}+rac{1}{2}m^2_ZZ_\mu Z^\mu+rac{1}{2}m^2_ZZ_\mu+rac{1}{2}m^2_Z$ $W^{\pm}_{\mu} = rac{1}{\sqrt{2}} (W^1_{\mu} \mp i W^2_{\mu})$ $egin{pmatrix} A_\mu \ Z_\mu \end{pmatrix} = egin{pmatrix} cos heta_w & sin heta_w \ -sin heta_w & cos heta_w \end{pmatrix} egin{pmatrix} B_\mu \ W^3_\mu \end{pmatrix}$ with $V_{\mu
u}=\partial_{\mu}V_{
u}-\partial_{
u}V_{\mu}$ $+(\partial_{\mu}H)(\partial^{\mu}H) - \frac{1}{2}m_{H}^{2}H^{2} +$ $+\mathcal{L}_{BB}+\mathcal{L}_{HH}+\mathcal{L}_{HB}$ VVV2 WS TGC and QGC $m_{H}^{2}=2\lambda v^{2}$ emerge together with Higgs couplings Physical Higgs boson emerges (massive, spin=0)

References

- 1. R. Bellan et al., A sensitivity study of triboson production processes to dimension-6 EFT operators at the LHC, arXiv preprint <u>arXiv:2303.18215</u> (2023).
- 2. B. Grzadkowski et al. Dimension-six terms in the Standard Model Lagrangian. Journal of High Energy Physics, <u>2010(10):1–18</u>, 2010
- 3. R. Bellan et al., A sensitivity study of VBS and diboson WW to dimension-6 EFT operators at the LHC, <u>10.1007/JHEP05(2022)039</u>.
- 4. C. Degrande et al., Effective Field Theory: a modern approach to anomalous couplings, <u>10.1016/j.aop.2013.04.016</u>
- 5. I. Brivio, SMEFTsim 3.0 a practical guide. <u>JHEP, 04:073, 2021</u>.