

La misura di precisione del g-2 del muone

19° Incontri di Fisica delle Alte Energie (IFAE2023) Catania | 12-14 Aprile 2023

Paolo Girotti (INFN Pisa)

per conto della collaborazione Muon g-2

Il g-2 del muone

- Il fattore adimensionale g codifica tutte le possibili interazioni virtuali tra il muone e il campo magnetico
- Livello albero: g=2 ($a_{\mu}=0$) • Primo contributo QED: $a_{\mu}=0.00116592061(41)$ [0.35 ppm] • Tutta la fisica: $a_{\mu}=0.00116592061(41)$ [0.35 ppm]
 - Una discrepanza tra la misura sperimentale e la previsione teorica potrebbe essere un segno della presenza di interazioni BSM

Motivazione

- a_{μ} misurato presso Brookhaven National Lab (BNL E821, 2006)
- a_{μ} (Exp) = 0.00116592089 ± 63 (540 ppb)
- a_u (Th) = 0.00116591810 ± 43 (368 ppb)
- Discrepanza di 3.7σ
- Obiettivo dell'esperimento Muon g-2 presso
 Fermilab: ridurre l'errore sperimentale di un fattore 4 fino alla precisione finale di <u>140 ppb</u>

Come misurare g-2

Frequenza di precessione dello spin $\vec{\omega}_s = -\frac{ge\vec{B}}{2m} - (1-\gamma)\frac{e\vec{B}}{m\gamma}$

13/04/23

Frequenza di ciclotrone

 $\vec{\omega}_c = -\frac{e\vec{B}}{m\alpha}$

Le interazioni virtuali del muone con il vuoto si manifestano in una differenza tra la frequenza di precessione dello spin e la frequenza di ciclotrone

Come misurare g-2

Come misurare g-2

 $\vec{\omega}_{a} = a_{\mu} \frac{e\vec{B}}{m} \longrightarrow a_{\mu} = \underbrace{\frac{\omega_{a}}{\tilde{\omega}_{p}'(T_{r})}}_{\left(\frac{\omega_{p}'(T_{r})}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}}_{\left(\frac{\omega_{p}'(T_{r})}{\mu_{e}} \frac{m_{\mu}}{\mu_{e}} \frac{g_{e}}{m_{e}} \frac{g_{e}}{2}}_{\left(\frac{\omega_{p}'(T_{r})}{\mu_{e}} \frac{m_{\mu}}{\mu_{e}} \frac{g_{e}}{m_{e}} \frac{g_{e}}{2}}_{\left(\frac{\omega_{p}'(T_{r})}{\mu_{e}} \frac{g_{e}}{\mu_{e}} \frac{g_{e}}{\mu_{e}} \frac{g_{e}}{\mu_{e}} \frac{g_{e}}{2}}_{\left(\frac{\omega_{p}}{\mu_{e}} \frac{g_{e}}{\mu_{e}} \frac{g_{e}}{\mu_{$

ρ_r: Distribuzione del fascio

6/21

P. Girotti | La misura di g-2

7/21

Due regali dalla natura

- Il pione ha spin 0 e decade in un muone e un neutrino (~99.99%)
- La violazione di parità del decadimento debole impone che il neutrino abbia elicità sinistrorsa
- Fascio accelerato → i muoni ad alto momento sono fortemente polarizzati

Violazione di parità → positroni ad alta energia μ^+ ► e⁺ sono emessi preferibilmente $N(t) = N_0 e^{-t/\tau} \left(1 + A \cos(\omega_a t + \varphi) \right)$ nella direzione dello spin ~ 2 GeV del muone 0.8 ~ 1 GeV n(y) Asimmetria osservata nel a(y) ~ 0.5 GeV laboratorio come 02 un'oscillazione del numero di positroni osservati in funzione del tempo 0.5

P. Girotti | La misura di g-2

Fascio

- 16 gruppi di 10¹² protoni
 @8 GeV vengono accelerati e consegnati attraverso il recycler ring ogni 1.4 s
- Ogni gruppo colpisce una targhetta fissa di Inconel® (NiCrFe)
- I pioni positivi sono estratti dall'interazione e decadono circolando nel delivery ring
- Un fascio puro di muoni polarizzati entra nell'anello g-2

Esperimento Muon g-2

Iniezione del fascio

- Inflettore superconduttore spostato di ~8 cm rispetto all'orbita nominale
- 3 kicker magnetici veloci operati alla corrente di ~4 kA per ~200 ns
- 8 quadrupoli elettrostatici di alluminio alla tensione di 13.8 kV per il focheggiamento verticale

Piastre kicker

https://doi.org/10.1016/j.nima.2021.165597

Quadrupoli

Magnete

- Magnete superconduttore raffreddato a ~5 K con elio liquido
- Campo magnetico verticale altamente uniforme di **1.45 T** con un raggio di 7.112 m
- Schermato passivamente e stabilizzato attivamente, per un'omogeneità superiore a 14 ppm RMS lungo l'intero angolo di azimuth

Rivelatori

- 24 calorimetri elettromagnetici per la misura dell'energia e del tempo di arrivo dei positroni
- 2 tracciatori per estrapolare la posizione del vertice di decadimento e misurare la distribuzione del fascio

Modulo di tracciatore

Sistema di calibrazione laser

https://doi.org/10.1088/1748-0221/14/11/P11025

Misura di ω_a

https://doi.org/10.1103/PhysRevD.103.072002

1.5

Frequency [MHz]

2

2.5

0.0 0.5 1

13/04/23

- I positroni sopra 1 GeV sono conteggiati in funzione del tempo e pesati secondo l'asimmetria A(E)
- Istogramma fittato con funzione a 22 parametri
 - Precessione dello spin e movimenti di fascio
- Nessuna frequenza osservata nella FFT dei residui

Misura di B

https://doi.org/10.1103/PhysRevA.103.042208

- Intensità del campo magnetico misurata in termini della precessione dei protoni ω_{p} con delle sonde a Risonanza Magnetica Nucleare (NMR)
- Campo monitorato continuamente attorno alla regione di accumulazione e misurato periodicamente al suo interno

378 sonde fisse per il monitoraggio continuo

17 sonde mobili per una mappatura 3D ogni ~3 giorni

Misura di fascio

https://doi.org/10.1088/1748-0221/17/02/P02035

- Due tracciatori a 180° e 270° ricostruiscono la traccia dei positroni per estrapolare il vertice di decadimento nella regione di accumulazione
- La distribuzione del fascio di muoni è poi estrapolata lungo l'intero angolo di azimuth dell'anello mediante una simulazione Geant4
- La coincidenza di segnale tra calorimetro e tracciatore è usata per identificare muoni e positroni

Correzioni

https://doi.org/10.1103/PhysRevAccelBeams.24.044002

 $a_{\mu} \propto \frac{f_{clock} \,\omega_{a}^{m} \left(1 + C_{e} + C_{p} + C_{ml} + C_{pa}\right)}{f_{calib} \left\langle \omega_{p}'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_{k} + C_{pa}\right)}$

- C_e: correzione di campo elettrico
- Effetto residuo di E su ω_{a}
- Correzione di ~480 ppb per il Run-1
- Misurata tramite analisi di ciclotrone

- B_k: correnti parassite dei kickers
- Indotte sulle piastre dal kick (200 ns)
- Di lunga durata, 200 μs
- Misurata tramite magnetometri Faraday

P. Girotti | La misura di g-2

17 / 21

Risultato del Run-1

- Valore di ω_{a} calcolato dalla media di 4 analisi indipendenti
- Analisi in cieco sul lato hardware e software
- Valore finale di a_{μ} del Run-1 \rightarrow <u>462 ppb</u> (434 ppb statistico, 157 ppb sistematico)

 a ~	$f_{clock}\omega_a^m(1+C_e+C_p+C_{ml}+C_{pa})$	
$a_{\mu} \propto$	$\overline{f_{calib}\left\langle\omega_p'(x,y,\phi)\times M(x,y,\phi)\right\rangle\left(1+B_k+B_q\right)}$	_)

Quantity	Correction [ppb]	Uncertainty [ppb]
ω_a (statistical)	-	434
ω_a (systematic)	-	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{calib}\langle \omega'_p(x,y,\phi) \cdot M(x,y,\phi) \rangle$	-	56
B_q	-17	92
B_k	-27	37
μ_p'/μ_e	-	10
m_{μ}/m_e	-	22
g_e	-	0
Total systematic	-	157
Total external factors		25
Total	544	462

 a_{μ} (FNAL) = 116 592 040(54) × 10⁻¹¹ (0.46 ppm) a_{μ} (World avg) = 116 592 061(41) × 10⁻¹¹ (0.35 ppm)

Stato della teoria

- Misura del Run-1 pubblicata il 7 Aprile 2021
 - <u>In accordo</u> con la misura di BNL (2006). Tensione di **4.20** tra la media globale e la previsione teorica della Theory Initiative (WP2020)
- Nuovi calcoli di precisione del contributo adronico a_{μ} (HVP-LO) basati su reticolo (**Lattice-QCD**) sono ora in tensione con la previsione basata sui dati di sezione d'urto $\sigma(e^+e^- \rightarrow adroni)$ tramite la relazione di dispersione:

$$a_{\mu}^{HVP} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} \frac{\mathrm{d}s}{s} \frac{\sigma_{e^+e^- \to hadrons}(s)}{\sigma_{e^+e^- \to \mu^+\mu^-}(s)} K(s)$$

P. Girotti | La misura di g-2

Conclusioni

- L'esperimento Muon g-2 presso Fermilab conduce una misura di alta precisione che coinvolge molti aspetti di fisica e ingegneristici
- Pubblicazione del Run-1 di notevole successo, con una precisione di 460 parti per miliardo, che conferma la misura di BNL
- A partire dal Run-2, miglioramenti riguardanti sia l'hardware che l'analisi permettono di ridurre numerose incertezze sistematiche
- <u>Una pubblicazione con precisione 2x è prevista per questa Estate</u>
- Insieme ai Run-4/5/6 siamo sulla buona strada per raggiungere l'obiettivo finale di 140 ppb con una pubblicazione finale nel 2025
- Nuove tensioni sulla previsione teorica del contributo adronico di a
- Dopo 75 anni la fisica del g-2 continua ad essere un tema caldo

Thank you for listening!