Stato delle ricerche di violazione di CP nei decadimenti degli adroni beauty a LHCb

Andrea Villa INFN e Università di Bologna

Incontri di Fisica delle Alte Energie - 12 Aprile 2023

Sommario

- Misura della fase debole ϕ_s nel decadimento $B_s \rightarrow \phi \phi$ [LHCb-PAPER-2023-00] NEW!
- Studio di violazione di *CP* nei decadimenti $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm} e$ $B^{\pm} \rightarrow [\pi^+\pi^-\pi^+\pi^-]_D h^{\pm}$ [LHCb-PAPER-2022-037]
- Misura delle asimmetrie *CP* time-dependent nei decadimenti $B^0_{(s)} \rightarrow h^+ h'^-$ in corso
- Misura delle asimmetrie *CP* integrate nei decadimenti $\Lambda_b^0 \rightarrow ph^-$ in corso

- Spettrometro a singolo braccio concentrato in avanti (2 < η < 5)
- Sensibile nella regione di massima produzione di coppie $b\overline{b}$ e $c\overline{c}$
- Rivelatore di vertice (VELO): ricostruzione di vertici secondari e ottima risoluzione sul parametro d'impatto,
- Rivelatori di emissione Cherenkov (RICH) per l'identificazione delle particelle (PID)
- Magnete, stazioni traccianti, calorimetri e camere per muoni
- Dati raccolti:
 - Run 1: $\mathcal{L} = 3 \text{ fb}^{-1}$, $\sqrt{s} = 7-8 \text{ TeV}$
 - Run 2: $\mathcal{L} = 6 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$

Misura della fase debole ϕ_s nel decadimento $B_s \rightarrow \phi \phi$

Misura della fase debole ϕ_s nel decadimento $B_s \rightarrow \phi \phi$ [LHCb-PAPER-2023-00] NEW!

- Il decadimento B⁰_s → φφ → K⁺K[−]K⁺K[−] è un ottimo banco di prova per la ricerca di Nuova Fisica oltre il Modello Standard (MS), in quanto può procedere solo tramite diagrammi a loop (o *pinguino*)
- Nel MS, la violazione di *CP* in funzione del tempo è caratterizzata dai due parametri φ_s^{sss} ≈ 0 e |λ| ≈ 1, che possono essere misurati nei 3 possibili stati di polarizzazione lineare del sistema φφ (0, ||, ⊥)
- Misura sui dati Run 2 che rimpiazza la precedente misura con dati fino al 2016 [JHEP 12 (2019) 155]
- Il tasso di decadimento differenziale può essere scritto come

$$\frac{\mathrm{d}^4\Gamma(t,\vec{\Omega})}{\mathrm{d}t\,\mathrm{d}\vec{\Omega}}\propto\sum_{k=1}^6h_k(t)f_k(\vec{\Omega})$$

- $f_k(\vec{\Omega})$ funzioni angolari [JHEP 12 (2019) 155] $\vec{\Omega} = (\theta_1, \theta_2, \Phi)$
- $h_k(t)$ funzioni temporali, dipendenti dal sapore iniziale del B_s^0 , dalla massa e larghezza di decadimento degli autostati di massa leggero e pesante, e dalle fasi e ampiezze $\phi_{s,i}$, $|\lambda_i|$

Misura della fase debole ϕ_s nel decadimento $B_s \rightarrow \phi \phi$ [LHCb-PAPER-2023-00] NEW!

- Il sapore iniziale del mesone B⁰_s è determinato da algoritmi di flavour-tagging, calibrati su decadimenti B⁺ → J/ψK⁺ e B⁰_s → D⁻_sπ⁺
- Le accettanze angolari e temporali sono studiate tramite campioni simulati
- Sono compiuti sia un fit totale per ottenere $\phi_s^{s\bar{s}s}$ che $|\lambda|$, sia un fit dipendente dalla polarizzazione usando $\phi_{s,i}$ e $|\lambda_i|$ ($i = 0, \|, \bot$)
- Vengono anche considerate possibili interferenze tra i vari stati di polarizzazione

Misura della fase debole ϕ_s nel decadimento $B_s \rightarrow \phi \phi$ [LHCb-PAPER-2023-00] NEW!

 • Risultati Run 2: Totale
 Polarizzati

 $\phi_s^{\bar{s}\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad}$ $\phi_{s,0} = -0.018 \pm 0.09 \text{ rad}$ $|\lambda_0| = 1.02 \pm 0.17$
 $|\lambda| = 1.004 \pm 0.030 \pm 0.009$ $\phi_{s,0} = -0.018 \pm 0.09 \text{ rad}$ $|\lambda_{\parallel}/\lambda_{0}| = 0.78 \pm 0.21$
 $\phi_{s,\perp} - \phi_{s,0} = -0.017 \pm 0.09 \text{ rad}$ $|\lambda_{\perp}/\lambda_{0}| = 0.97 \pm 0.22$ Misura della fase debole ϕ_s nel decadimento $B_s \rightarrow \phi \phi$ [LHCb-PAPER-2023-00] NEW!

 • Risultati Run 2: Totale
 Polarizzati

 $\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad}$ $\phi_{s,0} = -0.018 \pm 0.09 \text{ rad}$ $|\lambda_0| = 1.02 \pm 0.17$
 $|\lambda| = 1.004 \pm 0.030 \pm 0.009$ $\phi_{s,0} = -0.012 \pm 0.09 \text{ rad}$ $|\lambda_{\parallel}/\lambda_0| = 0.78 \pm 0.21$
 $\phi_{s,\perp} - \phi_{s,0} = -0.017 \pm 0.09 \text{ rad}$ $|\lambda_{\perp}/\lambda_0| = 0.97 \pm 0.22$

• Combinazione con il Run 1:

 $\phi_s^{s\bar{s}s} = -0.074 \pm 0.069$ rad $|\lambda| = 1.009 \pm 0.030$

compatibili con il MS

- Misura più precisa al mondo di asimmetria *CP* time-dependent nei decadimenti $B_s^0 \rightarrow \phi \phi$
- Nessuna evidenza di violazione di CP, né di dipendenza dallo stato di polarizzazione (misurata per la prima volta)

- I decadimenti $B^{\pm} \rightarrow Dh^{\pm}$ permettono di misurare l'angolo della matrice CKM $\gamma = \arg\left(\frac{-V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$
- Il canale D⁰ → K⁺K⁻π⁺π⁻ ha una ricca struttura risonante, che aumenta la sensibilità a γ se si studiano regioni particolari dello spazio delle fasi
- Ciò richiede la conoscenza della variazione della fase forte su tutto lo spazio delle fasi ⇒ si può estrarre da uno studio di ampiezza precedente [JHEP 02 (2019) 126], ma preferibile avere misure dirette in futuro
- Una analoga misura, con meno precisione, si può compiere con i decadimenti $D^0 o \pi^+ \pi^- \pi^+ \pi^-$
- L'ampiezza del decadimento può essere scritta come la somma delle due possibili transizioni:

$$\mathcal{A}_{B^{-}}(\Phi) = \mathcal{A}_{B^{-}}^{D^{0}h^{-}} \left(\mathcal{A}_{D^{0}}(\Phi) + r_{B}^{Dh} \boldsymbol{e}^{i(\delta_{B}^{Dh} - \gamma)} \mathcal{A}_{\overline{D}^{0}}(\Phi) \right)$$

- $\circ \ A_{D^0}$, $A_{\overline{D}^0}$ ampiezze dei decadimenti $D \to K^+ K^- \pi^+ \pi^-$ (o $D \to \pi^+ \pi^- \pi^+ \pi^-$)
- $r_B^{Dh} = \mathcal{A}_{B^-}^{\overline{D}^0 h^-} / \mathcal{A}_{B^-}^{D^0 h^-}$ rapporto tra ampiezza soppressa e favorita (≈ 0.1 per *DK* e 0.005 per *D* π)
- $\circ \delta_B^{Dh}$ differenza delle fasi deboli dei decadimenti
- • bin nello spazio delle fasi 5-dimensionale

• Si definiscono gli osservabili di violazione di CP:

$$x_{\pm}^{Dh} = r_B^{Dh} \cos\left(\delta_B^{Dh} \pm \gamma\right), \qquad y_{\pm}^{Dh} = r_B^{Dh} \sin\left(\delta_B^{Dh} \pm \gamma\right)$$

tramite cui si possono scrivere gli eventi di segnale

$$N_{\pm i}^{\pm} = N_{B^{\pm}}^{Dh} \left(F_{-i} + ((x_{\pm}^{Dh})^2 + (y_{\pm}^{Dh})^2) F_{\pm i} + 2\sqrt{F_{+i}F_{-i}} (x_{\pm}^{Dh}c_i - y_{\pm}^{Dh}s_i) \right)$$

 \circ $F_{\pm i}$ frazione di eventi $D \rightarrow h^+ h^- \pi^+ \pi^-$ nel bin *i*-esimo

◦ c_i , (s_i) valore medio della differenza del seno (coseno) di $\Delta \delta_D$ nel bin i-esimo dal modello di ampiezza di LHCb [JHEP 02 (2019) 126], in attesa di misure dirette da BESIII

 Un ulteriore vincolo su γ può essere imposto misurando anche le asimmetrie *CP* nel campione totale e il rapporto tra le larghezze rispetto al decadimento D → K⁺π⁻π⁺π⁻ [LHCb-PAPER-2022-017]:

$$A_{h}^{K\!K\pi\pi} = \frac{\Gamma(B^- \to Dh^-) - \Gamma(B^+ \to Dh^+)}{\Gamma(B^- \to Dh^-) + \Gamma(B^+ \to Dh^+)}$$

$$R^{KK\pi\pi} = \frac{R_{KK\pi\pi}}{R_{K\pi\pi\pi}}, \quad R_f = \frac{\Gamma(B^- \to [f]_D K^-) + \Gamma(B^+ \to [f]_D K^+)}{\Gamma(B^- \to [f]_D \pi^-) + \Gamma(B^+ \to [f]_D \pi^+)}$$

• Dal campione totale si ottengono i valori delle asimmetrie e dei rapporti delle larghezze:

$C\!P$ -violating observable	Fit results
$A_K^{KK\pi\pi}$	$0.093 \pm 0.023 \pm 0.002$
$A_{\pi}^{\pi\pi\pi\pi\pi}$	$-0.009 \pm 0.006 \pm 0.001$ $0.060 \pm 0.013 \pm 0.001$
$A_{\pi}^{\pi\pi\pi\pi}$	$-0.0082 \pm 0.0031 \pm 0.0007$
$R_{CP}^{KK\pi\pi}$	$0.974 \pm 0.024 \pm 0.015$
R _{CP}	$0.978 \pm 0.014 \pm 0.010$

• Dal campione totale si ottengono i valori delle asimmetrie e dei rapporti delle larghezze:

$C\!P$ -violating observable	Fit results
$A_K^{KK\pi\pi}$ $A^{KK\pi\pi}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
A_K^{π}	$\begin{array}{c} 0.060 \pm 0.013 \pm 0.001 \\ 0.060 \pm 0.013 \pm 0.001 \end{array}$
$A_{\pi}^{\pi\pi\pi\pi\pi}$ $R_{CP}^{KK\pi\pi}$	$\begin{array}{r} -0.0082 \pm 0.0031 \pm 0.0007 \\ 0.974 \ \pm 0.024 \ \pm 0.015 \end{array}$
$R_{CP}^{\pi\pi\pi\pi\pi}$	$0.978\ \pm 0.014\ \pm 0.010$

 Fittando le distribuzioni nei vari bin, si ottengono i valori degli osservabili di violazione di CP

$C\!P$ -violating observable	Fit result $(\times 10^2)$
x_{-}^{DK}	$7.9 \pm 2.9 \pm 0.4 \pm 0.4$
y_{-}^{DK}	$-3.3 \pm 3.4 \pm 0.4 \pm 3.6$
x_{\pm}^{DK}	$-12.5 \pm 2.5 \pm 0.3 \pm 1.7$
y_{\pm}^{DK}	$-4.2 \pm 3.1 \pm 0.3 \pm 1.3$
$x_{\xi}^{D\pi}$	$-3.1 \pm 3.5 \pm 0.7 \pm 0.1$
$y_{\xi}^{D\pi}$	$-1.7 \pm 4.7 \pm 0.6 \pm 1.1$

Incertezze dominate dalla statistica

• I risultati si possono interpretare in funzione degli osservabili fisici, ottenendo:

$$\delta_B^{DK} = (81^{+14}_{-13})^{\circ} \qquad r_B^{DK} = 0.110 \pm 0.020$$

$$\delta_B^{D\pi} = (298^{+62}_{-118})^{\circ} \qquad r_B^{D\pi} = 0.0041^{+0.0054}_{-0.0041}$$

$$\gamma = (116^{+12}_{-14})^{\circ}$$

- I risultati dell'analisi binnata e integrata sono compatibili con i precedenti risultati di LHCb [JHEP 12 (2021) 141]
- Prima misura di osservabili di *CP* nei decadimenti $B^{\pm} \rightarrow [K^+ K^- \pi^+ \pi^-]_D h^{\pm}$
- La misura dei parametri riguardanti la variazione della fase forte da parte di BESIII permetterà di aggiornare la misura in maniera model-independent

0.1

0.15

50

(

0.05

 $0.2 r_B^{DK}$

Misura delle asimmetrie *CP* time-dependent nei decadimenti $B^0_{(s)} o h^+ h'^-$

Misura delle asimmetrie *CP* time-dependent nei decadimenti $B^0_{(s)}
ightarrow h^+ h'^-$ in corso

- I decadimenti a due corpi privi di charm dei mesoni B⁰ e B⁰_s permettono di testare il Modello Standard e misurare gli angoli della matrice CKM
- Gli osservabili di violazione di CP possono essere misurati in maniera integrata (B⁰ → K⁺π⁻ e B⁰_s → π⁺K⁻):

$$\mathsf{A}_{CP} = \frac{\left|\overline{\mathsf{A}}_{\overline{f}}\right|^2 - \left|\mathsf{A}_{f}\right|^2}{\left|\overline{\mathsf{A}}_{\overline{f}}\right|^2 + \left|\mathsf{A}_{f}\right|^2}$$

 \bar{b} W^+ \bar{d}, \bar{s} \bar{u}

oppure dipendente dal tempo ($B^0 \to \pi^+\pi^- e B^0_s \to K^+K^-$):

$$\begin{aligned} \mathcal{A}_{CP}(t) &= \frac{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} \\ &= \frac{S_{f} \sin(\Delta m_{d(s)}t) - C_{f} \cos(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right) + A_{f}^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right)} \end{aligned}$$

Misura delle asimmetrie *CP* time-dependent nei decadimenti $B^0_{(s)} \rightarrow h^+ h'^-$

$$A_{CP}(t) = \frac{S_{f} \sin(\Delta m_{d(s)}t) - \frac{C_{f} \cos(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right) + A_{f}^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d(s)}}{2}t\right)}$$

- Cf: violazione di CP nel decadimento
- S_f : violazione di *CP* nell'interferenza tra mixing e decadimento • $A_t^{\Delta\Gamma} = \sqrt{1 - (C_f)^2 - (S_f)^2}$ constraint da verificare a posteriori
- Analisi compiuta da LHCb con dati raccolti fino al 2016 [JHEP 03 (2021) 075]
- Attualmente in corso la misura con l'intero campione Run 2 ⇒ 3× più statistica

Misura delle asimmetrie *CP* time-dependent nei decadimenti $B^0_{(s)} \rightarrow h^+ h'^-$

in corso

Misura delle asimmetrie *CP* time-dependent nei decadimenti $B^0_{(s)} \rightarrow h^+ h'^-$

- Nuova misura di violazione di CP nei decadimenti a 2 corpi dei mesoni B⁰ e B⁰_s in corso
- Campione totale Run 2, $\mathcal{L} = 6 \, \text{fb}^{-1}$
- Precisione prevista sugli osservabili:

$$\begin{split} \delta(A_{CP}^{B_0^0 \to K^+ \pi^-}) &= 2 \times 10^{-3} \\ \delta(A_{CP}^{B_0^0 \to \pi^+ K^-}) &= 8 \times 10^{-3} \\ \delta(C_{\pi\pi}) &= 0.03 \\ \delta(S_{\pi\pi}) &= 0.02 \\ \delta(C_{KK}) &= 0.02 \\ \delta(S_{KK}) &= 0.02 \end{split}$$

Misura più precisa al mondo di questi osservabili

Misura delle asimmetrie *CP* integrate nei decadimenti $\Lambda_b^0 \rightarrow ph^-$

Misura delle asimmetrie *CP* integrate nei decadimenti $\Lambda_b^0 \rightarrow ph^-$ in corso

- Ricerca di violazione di CP in decadimenti barionici, ancora da osservare
- Misura delle asimmetrie *CP* nei decadimenti $\Lambda_b^0 \rightarrow pK^- \in \Lambda_b^0 \rightarrow p\pi^-$ con l'intero campione Run 1+2 di LHCb
- Possibili transizioni tree-level o a loop
 - Sensibili a Nuova Fisica
 - \circ Diagrammi simili a quelli del $B^0 o K^+ \pi^-$, dove violazione di *CP* è già stata osservata

La nuova misura permetterà di raggiungere precisioni al di sotto dell'1% in entrambi i canali

Misura delle asimmetrie *CP* integrate nei decadimenti $\Lambda^0_b \to ph^-$ in corso

Stato sperimentale attuale, dominato da LHCb Run1

	${\cal A}_{CP}(\Lambda^0_b o pK^-)$	${\cal A}_{CP}(\Lambda^0_b o ho\pi^-)$
CDF [Phys. Rev. Lett. 113] LHCb [Phys. Lett. B 784]	$\begin{array}{c}(-10 \ \pm 8 \ \pm 4 \)\% \\ (- \ 2.0 \pm 1.3 \pm 1.9)\%\end{array}$	$\begin{array}{c}(6\pm\pm)\%\\(-3.5\pm1$

- Notevoli incertezze sistematiche, dovute alla asimmetria di produzione della Λ⁰_b e di interazione dei protoni
- Strategia: si misura l'asimmetria grezza nei dati

$$A_{raw}(f) = \frac{N(\Lambda_b^0 \to f) - N(\overline{\Lambda}_b^0 \to \overline{f})}{N(\Lambda_b^0 \to f) + N(\overline{\Lambda}_b^0 \to \overline{f})}$$

• E si sottraggono le asimmetrie sperimentali per ottenere A_{CP}:

$$\begin{split} \mathcal{A}_{CP}(f) &= \frac{\Gamma(\Lambda_b^0 \to f) - \Gamma(\overline{\Lambda}_b^0 \to \overline{f})}{\Gamma(\Lambda_b^0 \to f) + \Gamma(\overline{\Lambda}_b^0 \to \overline{f})} \\ &= \mathcal{A}_{raw}(f) - \mathcal{A}_D(f) - \mathcal{A}_{PID}(f) - \mathcal{A}_P(\Lambda_b^0) - \mathcal{A}_{trigger}(f) \end{split}$$

Riduzione dei sistematici grazie alla nuova misura di asimmetria di produzione della Λ⁰_b [JHEP 10 (2021) 060]

Misura delle asimmetrie *CP* integrate nei decadimenti $\Lambda_b^0 \rightarrow ph^-$ in corso

 Fit simultaneo agli 8 spettri di massa invariante m(h⁺h⁻) per stimare il numero di eventi di fondo cross-feed in ogni campione

 $egin{aligned} &A_{raw}(\Lambda^0_b
ightarrow pK^-)=(x.xx\pm 0.76)\%\ &A_{raw}(\Lambda^0_b
ightarrow p\pi^-)=(x.xx\pm 0.95)\% \end{aligned}$

- Nuovo metodo tag-and-probe ideato per stimare le asimmetrie dovute al trigger => uso di campioni semileptonici con alta statistica
- Aggiornamento e combinazione con la misura Run 1 alla luce dei recenti risultati per ridurre gli effetti sistematici
- La misura sarà la più precisa al mondo sui decadimenti del barione $\Lambda_b^0 \to ph^-$

Conclusioni

- L'esperimento LHCb si sta dimostrando in grado di produrre misure di alta precisione su numerosi osservabili di violazione di CP
- Sono stati presentati i risultati più recenti e due anticipazioni di misure in corso
- II Modello Standard continua a superare qualsiasi test ⇒ sempre più importante la fisica di precisione
- Con l'inizio del Run 3, ci si appresta a raccogliere ancora più dati a un'energia di 14 TeV con un rivelatore quasi completamente nuovo

