PROSPETTIVE DI SCOPERTA DELLO SQUARK TOP NELL'ESPERIMENTO ATLAS **AD HL-LHC IFAE 2023**

Abstract

La produzione diretta di coppie di squark top è uno dei processi previsti dalla Supersimmetria (SUSY) a LHC. Uno dei canali di ricerca per questo processo punta a scoprire il decadimento dello squark top in stati finali con due leptoni di carica opposta (elettroni o muoni), jets adronici e momento trasverso mancante, già oggetto di ricerche precedenti che hanno utilizzato i dati del Run2. Questo contributo riguarda le prospettive di scoperta dello squark top in questo canale con l'Esperimento ATLAS nella fase ad alta luminosità dell'acceleratore (High Luminosity LHC, HL-LHC), quando si prevede che LHC raggiungerà un'energia nel centro di massa di 14 TeV e raccoglierà una luminosità integrata fino a 3000 fb $^{-1}$.

Modello Standard Supersimmetrico Minimale (MSSM)

Obiettivo dell'analisi

Scopo dello studio è indagare la sensibilità alla scoperta del decadimento dello squark top in 2, 3 e 4 corpi con 2 leptoni carichi negli stati

Incontri di Fisica delle Alte Energie

- Neutralini $(\tilde{\chi}_{i=1...4}^{0})$ e chargini $(\tilde{\chi}_{i=1.2}^{\pm}$ sono autostati di massa ottenuti tramite combinazione lineare di higgsini e gaugini neutri o carichi.)
- SUSY: estensione del Modello Standard (MS) che introduce una simmetria tra bosoni e fermioni e prevede per ogni particella l'esistenza di un superpartner il cui spin differisce di 1/2
- MSSM: conserva R-parità: $R = (-1)^{3(B-L)+2S}$ e quindi prevede l'esistenza di una LSP (Lightest Supersymmetrical Particle) stabile
- Il neutralino piú leggero, $\tilde{\chi}_1^0$ è una possibile LSP neutra e quindi un candidato di materia oscura

Strategia di analisi

- Per i segnali supersimmetrici sono stati usati campioni di eventi simulati Montecarlo a livello *Truth* sottoposti a una procedura di *smearing*.
- Per i fondi di MS sono stati usati gli stessi campioni di eventi simulati Montecarlo con la ricostruzione completa del rivelatore usati per l'articolo.
- Le definizioni delle Regioni di Segnale (SR) utilizzate nell'analisi pubblicata sono state ottimizzate alle condizioni di HL, ottenute riscalando i campioni secondo la luminosità integrata e la sezione d'urto previste, osservando le distribuzioni N-1 nelle variabili considerate e confrontando la significanza statistica di alcuni segnali rappresentativi rispetto a modifiche sempre piú stringenti delle soglie dei tagli praticati.
- La significanza statistica è calcolata con la seguente formula:

$$Z_N = \sqrt{2\left(n\log\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\log\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$$

La strategia di selezione è basata su una precedente analisi pubblicata sui dati del Run2 [1], che ha prodotto un contorno di esclusione al 95% CL per bassi valori di $m_{\tilde{t}_1}$

Decadimento in 4 corpi

L'analisi del decadimento in 4 corpi prevede due SR, ottimizzate rispettivamente per segnali con piccola o grande $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0)$

	cp4-body	cp4-body
	$SR_{Small\Delta m}$	$SR_{Large\Delta m}$
$p_T(\ell_1)$ [GeV]	< 25	< 100
$p_T(\ell_2)$ [GeV]	< 10	[10, 50]
$m \left[C_{A} \right] $		10

Decadimento in 2 e 3 corpi

L'analisi del decadimento in 3 corpi prevede due SR, ottimizzate rispettivamente per segnali $\operatorname{con} \Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(W) \in \Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$

	$SR^{\mathrm{3-body}}_W$		SR_t^{3-body}	
Lepton flavour	DF	SF	DF	SF
$p_T(\ell_1)$ [GeV]	> 25		> 25	
$p_T(\ell_2)$ [GeV]	> 20		> 20	
$m_{\ell\ell}$ [GeV]	>	20	>	20
$ m_{\ell\ell}-m_Z $ [GeV]	—	> 20	—	> 20
<i>n_{b-jets}</i>	=	0	\geq	<u>1</u>
$\Delta \phi^{R}_{eta}$ [rad]	>	2.3	>	2.3
E_T^{miss} significance	> 12	ightarrow 15	> 12	ightarrow 15
$1/\gamma_{R+1}$	> 0.7 -	ightarrow 0.85	> 0.7	ightarrow 0.85
R_{p_T}	> 0.78	ightarrow 0.80	> 0.70	ightarrow 0.78
M^R_Δ [GeV]	> 105	ightarrow 115	> 120	ightarrow 140

> 900 -		
⊢	-	
~ L	_	ATLAS Work in Brogress
0		AILAS WOR IN FIGURESS
	-	<u> </u>
⊢	-	$\sqrt{a} = 4 4 T_{a} \sqrt{2000 f_{b}^{-1}}$
72500L		VS=141eV. 3000 10
SOUL		3-bbdy
	-	
⊆ ⊢	-	
_		

L'ottimizzazione eseguita sulle SR a 4 corpi produce un sensibile aumento di significanza Z_N nella regione cinematica interessata

dove $Z_N = 5$ corrisponde alla possibile regione di scoperta di \tilde{t}_1 e $Z_N = 1.65$ alla possibile regione di esclusione al 95% CL

Anche i contorni di esclusione *expected* presentano un analogo miglioramento utilizzando le definizioni ottimizzate delle SR

Bibliografia

[1] ATLAS Collaboration, Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in pp collisionsat $\sqrt{s}=13$ TeV with the ATLAS detector, J. High Energ. Phys. 2021, 165 (2021), DOI:10.1007/JHEP04(2021)165, <u>arXiV:</u>2102.01444

Francesco De Santis^[1,2] ^[1]INFN, Sezione di Lecce, ^[2]Università del Salento, Lecce (Italia) Incontri di Fisica delle Alte Energie, Catania (Italia), 12-14 Aprile 2023

