

Misura della massa del bosone di Higgs in $H \rightarrow ZZ^* \rightarrow 4\ell$

Donato Troiano (Università e INFN di Bari) a nome della Collaborazione CMS IFAE 2023, 12-14 Aprile 2023, Catania (Italia)

Abstract

Nel Modello Standard (MS) la massa del bosone di Higgs (m_H) è una costante fondamentale che non è predetta da nessuna teoria e di conseguenza deve essere misurata sperimentalmente. Molte delle proprietà del bosone di Higgs dipendono da m_H, tra cui la sezione d'urto di produzione, le frazioni di decadimento e le costanti di accoppiamento. Sono presentate le ultime misure di m_H nel canale di decadimento $H \rightarrow ZZ^* \rightarrow 4\ell$ (ℓ è un elettrone o un muone), chiamato "canale d'oro", all'esperimento CMS (Compact Muon Solenoid) a LHC (Large Hadron Collider) in collisioni protone-protone a $\sqrt{s} = 13$ TeV, usando una luminosità integrata di 35.9 fb $^{-1}$ [2]. H \rightarrow ZZ^{*} \rightarrow 4 ℓ beneficia di uno stato finale totalmente ricostruito e di una chiara segnatura, fornendo fino ad adesso il miglior risultato di m_H (in combinazione con H $\rightarrow \gamma \gamma$). Sono inoltre mostrate le proiezioni di m_H misurata a CMS a High-Luminosity LHC (HL-LHC) a $\sqrt{s} = 14$ TeV, usando una luminosità integrata di 3000 fb⁻¹ [3]. Rispetto all'ultimo risultato di CMS, le proiezioni a HL-LHC beneficiano non solo dell'incremento della luminosità e dell'energia nel centro di massa, ma anche di diversi miglioramenti nell'apparato sperimentale e di una nuova strategia di analisi.

Visualizzazione di un evento con un candidato Higgs che decade in 4 muoni (linee rosse) [1].

$H \rightarrow ZZ^* \rightarrow 4\ell$

Canali di produzione: ggH, qqH, WH, ZH, ttH, bbH, tqH. > Produzione dominata dalla fusione di due gluoni (ggH) (σ = 48 pb per \sqrt{s} =13 TeV). \Box H \rightarrow ZZ* \rightarrow 4 ℓ : bassa frazione di decadimento (1.25x10⁻⁴) ma beneficia di:

L'esperimento CMS a LHC

CMS è composto da un tracciatore di precisione a silicio, un calorimetro elettromagnetico (ECAL) e adronico (HCAL) all'interno di un solenoide superconduttore di 3.8 T, intervallato da rivelatori a gas per la rivelazione dei muoni.

Strategia di analisi

- L'obbiettivo dell'analisi è **misurare** \mathbf{m}_{H} tramite la funzione di likelihood $\mathcal{L}(\mathbf{m}_{4\ell}, \mathbf{D}_{kin}^{bkg} | \mathbf{m}_{H})$.
- \Box D^{bkg}_{kin} è una variabile definita come $\frac{P_{sig}}{P_{sig}+P_{bkg}}$ dove P_{sig} (P_{bkg}) è la probabilità che l'evento sia
 - di segnale (fondo) in base agli angoli e alle altre variabili cinematiche.
- □ Massa invariante dei quattro leptoni (m_{4ℓ}) fittata in $105 < m_{4ℓ} < 140$ GeV.
 - ➢ ggH, qqH, bbH, tqH : funzione double-sided Crystal Ball (DSCB).
 - > WH, ZH, ttH: DSCB convoluta con una funzione di Landau (descrive la possibilità che un leptone dello stato finale venga da W, Z, t).
 - > $gg/q\bar{q}$ → ZZ: funzione polinomiale.
 - Z+X (stimato a partire dai dati): funzione di Landau.

Upgrade a HL-LHC

CMS subirà modifiche all'apparato (CMS Phase-2) per poter lavorare a HL-LHC in condizioni di alta luminosità ed a pileup 200.

La simulazione ottenuta con DELPHES [4] mostra miglioramenti nelle misure.

□ Vincolo sul bosone Z on-shell: i momenti trasversi ricostruiti che compongono il bosone Z on-shell vengono ricalcolati (compatibilmente con la loro risoluzione) così che la loro massa invariante è quanto più prossima al valore sperimentale del bosone Z.

Migliorie nella strategia d'analisi

- **Quattro stati finali**: 4μ, 4e, 2e2μ, 2μ2e (dove negli ultimi due casi la prima coppia di leptoni viene dal bosone Z on-shell).
- □ VXBS: le quattro tracce dei leptoni che vengono dal decadimento dell'Higgs sono costrette ad avere un vertice comune compatibile con il beam spot.

□ 1D: senza D^{bkg}_{kin}, senza VXBS e senza il vincolo sul bosone Z

□ 1D_{VXBS}: senza D^{bkg}_{kin} e senza il vincolo sul bosone Z on-shell. Le modifiche di CMS hanno portato un miglioramento nella misura, in particolare si registra una riduzione di ~25% sulla risoluzione dalla massa invariante dei 4µ. L'errore atteso su m_H ottenuto dalla proiezione di CMS a **HL-LHC** è $22 (stat.) \pm 20 (sis.) MeV$ \Box A CMS in [2] si è ottenuta m_H = 125.26 GeV con un errore atteso di $240 (stat.) \pm 90 (sis.) MeV$

□ Il precedente errore statistico, scalato a 3000 fb⁻¹, è 26 MeV.

Eventi classificati in 9 categorie dell'errore relativo della massa invariante dei quattro leptoni ($\mathbf{D}_{\mathbf{m}_{4\ell}} = \sigma_{m_{4\ell}}/m_{4\ell}$).

> I parametri delle DSCBs che descrivono il segnale dipendono da $D_{m_{A}\rho}$. \Box m_H è stato ottenuto costruendo in ogni categoria di $D_{m_{4\ell}}$ e per ogni stato finale $\mathcal{L}(m_{4\ell}, D_{kin}^{bkg}|m_H)$ massimizzando il prodotto delle 9x4 likelihoods. > In [2] il risultato finale era stato ottenuto senza la categorizzazione su $D_{m_{4\ell}}$ e massimizzando la funzione di likelihood $\mathcal{L}(m_{4\ell}, \sigma_{m_{4\ell}}, D_{kin}^{bkg}|m_H)$.

> In questo modo si trascura la correlazione tra $D_{m_{A\ell}}$ e D_{kin}^{bkg}

L'errore statistico ha subito una riduzione oltre il semplice aumento della luminosità.

Conclusioni

 \Box È stata mostrato l'ultimo valore di m_H misurato a CMS e la sua proiezione a HL-LHC. \Box La nuova misura di m_H si avvale dei seguenti fattori: Aumento della luminosità integrata e dell'energia nel centro di massa. ≻Migliorie nell'apparato sperimentale. ≻Una nuova strategia d'analisi. \Box La proiezione mostra un errore su m_H ridotto di ~ 90%. Si registra un miglioramento del ~70% rispetto al semplice scale con la luminosità.

Referenze e contatti

donato.troiano@cern.ch

donato.troiano@ba.infn.it

[1] http://cds.cern.ch/record/2692545

[2] <u>CMS Collaboration</u>, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\sqrt{s} = 13$ TeV, JHEP11(2017)047

[3] <u>CMS-PAS-FTR-21-007</u>

[4] The DELPHES 3 collaboration, DELPHES 3: a modular framework for fast simulation of a generic collider experiment, JHEP02(2014)057