

Ricerca di decadimenti rari del bosone di Higgs in un mesone J/ Ψ , Ψ (2S) o Υ (nS) e un fotone

IFAE 2023

R. Ardino^{1,2,3} per la collaborazione CMS

¹Università degli Studi di Padova ²INFN Sezione di Padova ³CERN, Geneva, Switzerland

14 Aprile, 2023

Introduzione

Introduzione: accoppiamento Hcc

Figure: Modificatori di accoppiamento dell'Higgs a fermioni/bosoni di gauge, in funzione della massa del fermione/bosone di gauge [1] Coupling di Yukawa tra Higgs e fermioni nel Standard Model

Misure di CMS e ATLAS degli accoppiamenti con l'Higgs:

- Accoppiamenti alla terza generazione di fermioni misurati e consistenti con lo SM
- Focus sugli accoppiamenti con la seconda generazione
- Discrepanze? ⇒ Fisica oltre lo SM e informazioni sul meccanismo dietro la gerarchia di masse dei fermioni

IN

Introduzione: accoppiamento Hcc

Figure: Modificatori di accoppiamento dell'Higgs a fermioni/bosoni di gauge, in funzione della massa del fermione/bosone di gauge [1]

Coupling di Yukawa tra Higgs e fermioni nel Standard Model

Misure di CMS e ATLAS degli accoppiamenti con l'Higgs:

- Accoppiamenti alla terza generazione di fermioni misurati e consistenti con lo SM
- Focus sugli accoppiamenti con la seconda generazione
- Discrepanze? ⇒ Fisica oltre lo SM e informazioni sul meccanismo dietro la gerarchia di masse dei fermioni

Sonde per l'accoppiamento Hcc:

- $\blacksquare \hspace{0.1 cm} H \rightarrow \overline{c}c:$ "frequente", ma alto background e richiede charm-jet tagging
- \mathbb{Z} $H \to \Psi(nS)\gamma$: decadimento estremamente raro ma molto "pulito"

Misura dell'accoppiamento $H\bar{c}c$: $H \rightarrow \bar{c}c$

Decadimenti inclusivi H $\rightarrow \bar{c}c$

- ✓ Frazione di decadimento $H \rightarrow \bar{c}c$: 2.9%!
- × Background più grandi e charm-tagging

Canale principale considerato $pp \rightarrow VH(H \rightarrow \bar{c}c)$ [2]

R. Ardino

(min

Misura dell'accoppiamento H $\bar{c}c$: H $\rightarrow \Psi(nS)\gamma$

Decadimento estremamente raro dell'Higgs (e della Z):

- Predetto dallo SM, processi diretto+indiretto
- Canale della Z benchmark per la predizione sul Br

■
$$\mathcal{B}(H \rightarrow \Psi(nS)\gamma) \sim 10^{-6}$$
, $\mathcal{B}(Z \rightarrow \Psi(nS)\gamma) \sim 10^{-8}$ [3]

Misura dell'accoppiamento H $\bar{c}c$: H $\rightarrow \Psi(nS)\gamma$

Decadimento estremamente raro dell'Higgs (e della Z):

- Predetto dallo SM, processi diretto+indiretto
- Canale della Z benchmark per la predizione sul Br
- $\mathcal{B}(H \to \Psi(nS)\gamma) \sim 10^{-6}$, $\mathcal{B}(Z \to \Psi(nS)\gamma) \sim 10^{-8}$ [3]
- $(Z, H) \rightarrow \Psi(nS)\gamma$: loop di *c* quark
 - \Rightarrow sonda per l'accoppiamento H $\bar{c}c$
- $(Z, H) \rightarrow \Upsilon(nS)\gamma$: loop di *b* quark
 - Info su parte reale e immaginaria dell'accoppiamento $H\bar{b}b$

Misura dell'accoppiamento H $\bar{c}c$: H $\rightarrow \Psi(nS)\gamma$

Decadimento estremamente raro dell'Higgs (e della Z):

- Predetto dallo SM, processi diretto+indiretto
- Canale della Z benchmark per la predizione sul Br
- $\mathcal{B}(H \to \Psi(nS)\gamma) \sim 10^{-6}$, $\mathcal{B}(Z \to \Psi(nS)\gamma) \sim 10^{-8}$ [3]
- $(Z, H) \rightarrow \Psi(nS)\gamma$: loop di *c* quark
 - \Rightarrow sonda per l'accoppiamento H $\bar{c}c$
- $(Z, H) \rightarrow \Upsilon(nS)\gamma$: loop di *b* quark
 - Info su parte reale e immaginaria dell'accoppiamento $H\bar{b}b$
- Mesone osservato dal decadimento in una coppia μ
- **Topologia** "back-to-back" (coppia di μ opposta a γ)

Risultati pubblici fino a ora (in aggiornamento!)

CMS [9]

Note:

- Analisi solo per $Z/H \rightarrow J/\Psi\gamma$ con dati del 2016 di CMS
- Lavori in corso con il dataset di Run 2 di CMS
- Analisi per $Z/H \rightarrow \Psi(nS)\gamma$ verso l'approvazione
- Analisi per $Z/H \rightarrow \Upsilon(nS)\gamma$ in corso

R. Ardino

IFAE 2023, Catania

Analisi di CMS con i dati del 2016

Canale	$N_{\rm ev}$ (H)	$N_{\rm ev}$ (Z)
$\rightarrow J/\Psi\gamma$	~ 1.4	~ 44
$ ightarrow \Psi(2S)\gamma$	$\sim 10^{-2}$	~ 3.1
$ ightarrow \Upsilon(1S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(2S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(3S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$

Table: Eventi attesi per i vari canali con 138 fb $^{-1}$. Accettanze ed efficienze non incluse.

- $\sim 138~\text{fb}^{-1}$ acquisiti e certificati da CMS durante Run 2:
 - Più luminosità integrata necessaria per eventuale osservazione
 - Obiettivo per High-Luminosity LHC!
 - Per adesso, limiti superiori sulla sezione d'urto $\mu = \sigma / \sigma_{SM}$

Canale	$N_{\rm ev}$ (H)	$N_{\rm ev}$ (Z)
$\rightarrow J/\Psi\gamma$	~ 1.4	~ 44
$ ightarrow \Psi(2S)\gamma$	$\sim 10^{-2}$	~ 3.1
$ ightarrow \Upsilon(1S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(2S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(3S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$

Table: Eventi attesi per i vari canali con 138 fb $^{-1}$. Accettanze ed efficienze non incluse.

- $\sim 138~\text{fb}^{-1}$ acquisiti e certificati da CMS durante Run 2:
 - Più luminosità integrata necessaria per eventuale osservazione
 - Obiettivo per High-Luminosity LHC!
 - Per adesso, limiti superiori sulla sezione d'urto $\mu = \sigma / \sigma_{SM}$

Strategia di analisi:

- Stato finale:
 - Coppia di muoni isolati
 - Fotone isolato ed energetico
- Ricostruire le particelle dello stato finale . . .
- 3 ... ricostruire le distribuzioni di massa invariante $m_{\mu\mu}$ e $m_{\mu\mu\gamma}$
- Segnale: 2 risonanze (Z o H; $\Psi(nS)$ o $\Upsilon(nS)$)
- **I** lesenale atteso picca su $m_{\mu\mu} \in m_{\mu\mu\gamma}$ a differenza dei fondi di SM (QCD con e senza mesone, Z FSR, H Dalitz)

Canale	$N_{\rm ev}$ (H)	$N_{\rm ev}$ (Z)
$\rightarrow J/\Psi\gamma$	~ 1.4	~ 44
$ ightarrow \Psi(2S)\gamma$	$\sim 10^{-2}$	~ 3.1
$ ightarrow \Upsilon(1S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(2S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(3S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$

Table: Eventi attesi per i vari canali con 138 fb $^{-1}$. Accettanze ed efficienze non incluse.

- $\sim 138~\text{fb}^{-1}$ acquisiti e certificati da CMS durante Run 2:
 - Più luminosità integrata necessaria per eventuale osservazione
 - Obiettivo per High-Luminosity LHC!
 - Per adesso, limiti superiori sulla sezione d'urto $\mu = \sigma / \sigma_{SM}$

Strategia di analisi:

- Stato finale:
 - Coppia di muoni isolati
 - Fotone isolato ed energetico
- Ricostruire le particelle dello stato finale . . .
- 3 ... ricostruire le distribuzioni di massa invariante $m_{\mu\mu}$ e $m_{\mu\mu\gamma}$
- Segnale: 2 risonanze (Z o H; $\Psi(nS)$ o $\Upsilon(nS)$)
- Il segnale atteso picca su $m_{\mu\mu}$ e $m_{\mu\mu\gamma}$ a differenza dei fondi di SM (QCD con e senza mesone, Z FSR, H Dalitz)

Canale	$N_{\rm ev}$ (H)	$N_{\rm ev}$ (Z)
$\rightarrow J/\Psi\gamma$	~ 1.4	~ 44
$ ightarrow \Psi(2S)\gamma$	$\sim 10^{-2}$	~ 3.1
$ ightarrow \Upsilon(1S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(2S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(3S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$

Table: Eventi attesi per i vari canali con 138 fb $^{-1}$. Accettanze ed efficienze non incluse.

- $\sim 138~\text{fb}^{-1}$ acquisiti e certificati da CMS durante Run 2:
 - Più luminosità integrata necessaria per eventuale osservazione
 - Obiettivo per High-Luminosity LHC!
 - Per adesso, limiti superiori sulla sezione d'urto $\mu = \sigma / \sigma_{SM}$

Strategia di analisi:

- Stato finale:
 - Coppia di muoni isolati
 - Fotone isolato ed energetico
- Ricostruire le particelle dello stato finale . . .
- 3 ... ricostruire le distribuzioni di massa invariante $m_{\mu\mu}$ e $m_{\mu\mu\gamma}$
- Segnale: 2 risonanze (Z o H; $\Psi(nS)$ o $\Upsilon(nS)$)
- **I** lesenale atteso picca su $m_{\mu\mu} \in m_{\mu\mu\gamma}$ a differenza dei fondi di SM (QCD con e senza mesone, Z FSR, H Dalitz)

por C

Canale	$N_{\rm ev}$ (H)	$N_{\rm ev}$ (Z)
$\rightarrow J/\Psi\gamma$	~ 1.4	~ 44
$ ightarrow \Psi(2S)\gamma$	$\sim 10^{-2}$	~ 3.1
$ ightarrow \Upsilon(1S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(2S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$
$ ightarrow \Upsilon(3S)\gamma$	$\sim 10^{-3}$	$\sim 10^{-1}$

Table: Eventi attesi per i vari canali con 138 fb $^{-1}$. Accettanze ed efficienze non incluse.

- $\sim 138~\text{fb}^{-1}$ acquisiti e certificati da CMS durante Run 2:
 - Più luminosità integrata necessaria per eventuale osservazione
 - Obiettivo per High-Luminosity LHC!
 - Per adesso, limiti superiori sulla sezione d'urto $\mu = \sigma / \sigma_{\rm SM}$

Strategia di analisi:

- Stato finale:
 - Coppia di muoni isolati
 - Fotone isolato ed energetico
- Ricostruire le particelle dello stato finale ...
- 3 ... ricostruire le distribuzioni di massa invariante $m_{\mu\mu}$ e $m_{\mu\mu\gamma}$
- **4** Segnale: 2 risonanze (Z o H; $\Psi(nS)$ o $\Upsilon(nS)$)
- Il segnale atteso picca su $m_{\mu\mu}$ e $m_{\mu\mu\gamma}$ a differenza dei fondi di SM (QCD con e senza mesone, Z FSR, H Dalitz)

High-Level-Trigger

Single Muon + Photon (Mu17_Photon30*)

High-Level-Trigger

Single Muon + Photon (Mu17_Photon30*)

Muoni

- Coppia di segno opposto
- $p_{T_{1,2}} > 20, 4 \text{ GeV}$
- Accettanza geometrica
- Ricostruzione vertice $\Psi(nS)$
- Prompt
- Isolati da altra attività adronica

High-Level-Trigger

Single Muon + Photon (Mu17_Photon30*)

Muoni

- Coppia di segno opposto
- *p*_{T1,2} > 20,4 GeV
- Accettanza geometrica
- Ricostruzione vertice $\Psi(nS)$
- Prompt
- Isolati da altra attività adronica

Fotone

- lacksquare \geq 1 fotone nell'evento
- $E_{\rm T} > 33~{\rm GeV}$
- Accettanza geometrica
- Isolato da altra attività adronica

High-Level-Trigger

Single Muon + Photon (Mu17_Photon30*)

Muoni

- Coppia di segno opposto
- *p*_{T1,2} > 20,4 GeV
- Accettanza geometrica
- Ricostruzione vertice $\Psi(nS)$
- Prompt
- Isolati da altra attività adronica

Fotone

print .

- lacksquare \geq 1 fotone nell'evento
- *E*_T > 33 GeV
- Accettanza geometrica
- Isolato da altra attività adronica

IFAE 2023, Catania

Modellizzazione degli eventi

Categorizzazione:

- Per la Z
 - Fotone nel barrel (EB), ECAL cluster di energia del fotone concentrato (alto R₉) o meno (basso R₉)
 - Fotone nell'endcap (EE)
- × Higgs: Bassa statistica impedisce di categorizzare per processo di produzione

Inin

Modellizzazione degli eventi

Categorizzazione:

- Per la Z
 - Fotone nel barrel (EB), ECAL cluster di energia del fotone concentrato (alto R₉) o meno (basso R₉)
 - Fotone nell'endcap (EE)
- × Higgs: Bassa statistica impedisce di categorizzare per processo di produzione

Modellizzazione dei fondi:

- Fondo decrescente di QCD ⇒ data-driven, fit con più famiglie di funzioni
- Background risonante ⇒ Monte Carlo

Modellizzazione del segnale:

 Dal Monte Carlo, fit con Double-Sided Crystall Ball

IN

	$\mathrm{Z} ightarrow \mathrm{J}/\psi \gamma$ channel		${ m H} ightarrow { m J}/\psi\gamma$ channel	
	Signal	Resonant	Signal	Resonant
Source		background		background
Integrated luminosity		2.5	5%	
Theoretical uncertainties				
Signal cross section (scale)	3.5%	5.0%	+4.	6% -6.7%
Signal cross section (PDF)	1.7%	5.0%	3.2%	
Branching fraction	_	5.0%	_	6.0%
Detector simulation, reconstruction				
Pileup weight	0.8%	1.8%	0.7%	1.6%
Trigger	4.0%	4.0%	3.9%	4.0%
Muon ident./Isolation	3.0%	3.4%	2.0%	2.5%
Photon identification	1.1%	1.1%	1.2%	1.2%
Electron veto	1.1%	1.1%	1.0%	1.0%
Signal model				
$m_{\mu\mu\gamma}$ scale	0.06%	_	0.1%	_
$m_{\mu\mu\gamma}$ resolution	1.0%	—	4.8%	—

Luminosità integrata:

 \blacksquare Full Run 2: 2.5% \rightarrow 1.6%

ee 🛞 💯

	$\mathrm{Z} ightarrow \mathrm{J}/\psi \gamma$ channel		$H \rightarrow J/\psi \gamma$ channel	
	Signal	Resonant	Signal	Resonant
Source		background		background
Integrated luminosity		2.5	5%	
Theoretical uncertainties				
Signal cross section (scale)	3.5%	5.0%	+4.6% -6.7%	
Signal cross section (PDF)	1.7%	5.0%	3.2%	
Branching fraction	_	5.0%	_	6.0%
Detector simulation, reconstru	uction			
Pileup weight	0.8%	1.8%	0.7%	1.6%
Trigger	4.0%	4.0%	3.9%	4.0%
Muon ident./Isolation	3.0%	3.4%	2.0%	2.5%
Photon identification	1.1%	1.1%	1.2%	1.2%
Electron veto	1.1%	1.1%	1.0%	1.0%
Signal model				
$m_{\mu\mu\gamma}$ scale	0.06%	_	0.1%	_
$m_{\mu\mu\gamma}$ resolution	1.0%	—	4.8%	_

Luminosità integrata:

Full Run 2: $2.5\% \rightarrow 1.6\%$

Incertezze teoriche dominanti:

- \times In particolare PDF e predizione Br
- ⇒ Entrambe possono essere ridotte in futuro

ee 🛞 💯

	$\mathrm{Z} ightarrow \mathrm{J}/\psi \gamma$ channel		$H \rightarrow J/\psi \gamma$ channel	
	Signal	Resonant	Signal	Resonant
Source	0	background		background
Integrated luminosity		2.5	5%	
Theoretical uncertainties				
Signal cross section (scale)	3.5%	5.0%	+4.	6% -6.7%
Signal cross section (PDF)	1.7%	5.0%	3.2%	
Branching fraction	_	5.0%	_	6.0%
Detector simulation, reconstru	uction			
Pileup weight	0.8%	1.8%	0.7%	1.6%
Trigger	4.0%	4.0%	3.9%	4.0%
Muon ident./Isolation	3.0%	3.4%	2.0%	2.5%
Photon identification	1.1%	1.1%	1.2%	1.2%
Electron veto	1.1%	1.1%	1.0%	1.0%
Signal model				
$m_{\mu\mu\gamma}$ scale	0.06%	_	0.1%	_
$m_{\mu\mu\gamma}$ resolution	1.0%	—	4.8%	—

Luminosità integrata:

Full Run 2: $2.5\% \rightarrow 1.6\%$

Incertezze teoriche dominanti:

- × In particolare PDF e predizione Br
- ⇒ Entrambe possono essere ridotte in futuro

Incertezze su simulazione e ricostruzione:

- × Efficienza di trigger dominante
- Bassa statistica del dataset ausiliario per la determinazione dell'incertezza

e (1)

R. Ardino

por 🕢 🚞

			$\mathrm{Z} ightarrow \mathrm{J}/\psi \gamma$ channel		${ m H} ightarrow { m J}/\psi \gamma$ channel	
			Signal	Resonant	Signal	Resonant
Source				background		background
Integrated	luminosity			2.5	5%	
Theoretica	l uncertainti	ies				
Signal c	ross section	(scale)	3.5%	5.0%	+4.6	6% -6.7%
Signal c	ross section	(PDF)	1.7%	5.0%		3.2%
Branchi	ng fraction		_	5.0%	_	6.0%
Detector s	imulation, re	econstru	iction			
Pileup v	veight		0.8%	1.8%	0.7%	1.6%
Trigger	0		4.0%	4.0%	3.9%	4.0%
Muon ident./Isolation		3.0%	3.4%	2.0%	2.5%	
Photon identification		1.1%	1.1%	1.2%	1.2%	
Electron veto		1.1%	1.1%	1.0%	1.0%	
Signal mo	del					
$m_{\mu\mu\gamma}$ sca	ale		0.06%	_	0.1%	_
$m_{\mu\mu\gamma}$ res	solution		1.0%	_	4.8%	_
Channel	Polarization	σ (fb) at	95% CL	$\mathcal{B}(Z\ (H)\to J/\psi\gamma)$	at 95% CL	$\frac{\mathcal{B}(Z (H) \rightarrow J/\psi\gamma)}{\mathcal{B}_{SM}(Z (H) \rightarrow J/\psi\gamma)}$
	Unpolarized					
$Z \rightarrow J/\psi \gamma$	Transverse	/ -	- 12.05		6	
II . I///-	Longitudinal	3.9 (4.	$5^{+2.0}_{-1.4}$	$1.2(1.4^{+0.6}_{-0.4})$	< 10 ⁻⁰	13 (15)
$H \rightarrow J/\psi \gamma$	Iransverse	2.5 (1.)	(-0.5)	7.6 $(5.2^{+2.4}_{-1.6})$	< 10 *	260 (170)

IFAE 2023, Catania

Luminosità integrata:

 \blacksquare Full Run 2: 2.5% \rightarrow 1.6%

Incertezze teoriche dominanti:

- × In particolare PDF e predizione Br
- ⇒ Entrambe possono essere ridotte in futuro

Incertezze su simulazione e ricostruzione:

- × Efficienza di trigger dominante
- Bassa statistica del dataset ausiliario per la determinazione dell'incertezza

Limiti superiori al 95% C.L. sulla signal strenght $\sigma \times B$

- Test statistico basato su Likelihood ratio
- Metodo CLs utilizzato con approssimazione asintotica
- Nessun eccesso/discrepanza con lo SM osservata

Conclusione

Sommario e Prospettiva

Quanto visto oggi:

- Misura del coupling Hcc nuova frontiera e banco di prova per lo Standard Model
- \blacksquare Possibile misura con ricerca diretta H \rightarrow $\bar{c}c$
- Alternativa rara ma basso background: $\mathbf{H} \rightarrow \Psi(\mathbf{nS})\gamma$
- $\blacksquare \ Z \to \Psi(nS)\gamma$ come benchmark di validazione della predizione del Br del processo
- Nessun eccesso e/o discrepanze con lo SM nei risultati pubblici

Sommario e Prospettiva

Quanto visto oggi:

- Misura del coupling Hcc nuova frontiera e banco di prova per lo Standard Model
- \blacksquare Possibile misura con ricerca diretta H $\rightarrow \bar{c}c$
- Alternativa rara ma basso background: $H \rightarrow \Psi(nS)\gamma$
- $\blacksquare \ Z \to \Psi(nS)\gamma$ come benchmark di validazione della predizione del Br del processo
- Nessun eccesso e/o discrepanze con lo SM nei risultati pubblici

R. Ardino

Prospettive per l'analisi con i dati del Run 2:

- Simulazione segnale con Madgraph5: corrette correlazioni di spin
- Nessun reweight su distribuzioni angolari attese necessario
- Categorizzazione su modo di produzione dell'H
- Selezioni ottimizzate
- Regione di Controllo per background risonanti
- Sistematiche ridotte e analisi statistica migliorata

IFAE 2023, Catania

Back-Up slides

Decadimenti rari dell'Higgs (e della Z)

Decadimenti rari dell'Higgs (e Z) per sondare lo SM:

- Decadimenti rari $(\mathsf{Z},\mathsf{H}) \to (\mathsf{J}/\Psi,\Psi(2\mathsf{S}),\Upsilon(\mathsf{nS}))\gamma$ predetti
- Non ancora osservati [3]

$$\begin{array}{l} & \mathcal{B}(\mathsf{H} \to \Psi(\mathsf{nS})\gamma) = (3.01^{+0.15}_{-0.15}, 1.03^{+0.06}_{-0.06}) \times 10^{-6} \\ & \mathcal{B}(\mathsf{Z} \to \Psi(\mathsf{nS})\gamma) = (8.96^{+1.51}_{-1.38}, 4.83^{+1.02}_{-0.91}) \times 10^{-8} \\ & \mathcal{B}(\mathsf{H} \to \Upsilon(\mathsf{nS})\gamma) = (9.97^{+4.04}_{-3.03}, 2.62^{+1.39}_{-0.91}, 1.87^{+1.05}_{-0.69}) \times 10^{-5} \\ & \mathcal{B}(\mathsf{Z} \to \Upsilon(\mathsf{nS})\gamma) = (4.80^{+0.26}_{-0.25}, 2.44^{+0.14}_{-0.13}, 1.88^{+0.11}_{-0.10}) \times 10^{-9} \end{array}$$

- **(** Z,H $) \to \Psi(\mathsf{nS})\gamma$ anche attraverso *c* quark loop
 - Permette misura dell'accoppiamento Hcc
 - Canale della Z benchmark per calcoli teorici
- $(Z, H) \rightarrow \Upsilon(nS)\gamma$ anche attraverso *b* quark loop
 - Info su parte reale e immaginaria dell'accoppiamento $H\bar{b}b$
- \blacksquare Mesone osservato dal successivo decadimento in coppia di μ
 - $\mathcal{B}(J/\Psi \to \mu\mu) = (5.961 \pm 0.033) \times 10^{-2}$ [4]
 - $\mathcal{B}(\Psi(2S) \to \mu\mu) = (8.0 \pm 0.6) \times 10^{-3}$ [5]

Processo molto "pulito", bassi background di SM

(a) Processo diretto con c/b loop (b) Processo indiretto con qqq

(c) Processo indiretto con WWW (d) Processo indiretto con WW

HLT Trigger

Single Muon + Photon (Mu17_Photon30*)

Muons

- *p*_{T1,2} > 20,4 GeV
- |η| < 2.4</p>
- $\ \ \left| {{\left. {{d_{xy}}} \right|} < 0.5} \right.$ cm, $\left| {d} \right|_z < 1$ cm
- Quality: Particle Flow medium ID
- Isolati da altra attività adronica

Photons

- *E*_T > 33 GeV
- |η| < 2.5</p>
- Qualità: ID multivariato
- Isolato da altra attività adronica

$\Psi(nS)$ vertex reconstruction

 Un candidato Ψ(2S) composto da due muoni isolati con p_T > 24 GeV

Selection sets

- $\Delta R(\mu, \gamma) > 1$
- $\Delta R(\mu\mu,\gamma) > 2$
- $\Delta \varphi(\mu \mu, \gamma) > 1.5$
- Tagli in range di massa invariante:
 - $3.0 \leq m_{\mu\mu} \leq 3.2 \; ext{GeV} \; (extsf{J}/ heta)$
 - 70 ≤ $m_{\mu\mu\gamma}$ ≤ 120 GeV (Z) ■ 100 ≤ $m_{\mu\mu\gamma}$ ≤ 150 GeV (H)
- $p_{\rm T}(\mu\mu)/m_{\mu\mu\gamma}$ ratio cut
- $E_{\rm T}(\mu\mu)/m_{\mu\mu\gamma}$ ratio cut

Categorization

Pseudorapidità fotone:

- Barrel: $|\eta_{\gamma}| < 1.479$
- Endcap: $|\eta_{\gamma}| > 1.653$

R9:

- "Centered energy sum of 3 × 3 ECAL crystals in supercluster associated with the photon, divided by the energy of the supercluster"
- Alto: R₉ > 0.94 (fotoni con alta risoluzione)
- Basso: R₉ < 0.94 (fotoni con risoluzione più degradata)

Efficienza di segnale complessiva:

- Canale Z: 14% degli eventi dopo selezioni
- Canale H: 22% degli eventi dopo selezioni
- Picco sulla massa della J/Ψ nei dati mostra che un vero candidato J/Ψ è ricostruito e selezionato
- Eventi che vengono da produzione inclusiva di quarkonio

Distribuzione del tempo di decadimento proprio $\frac{m_{\mu\mu}}{p_{\pi}^{\mu_{\mu}}} L_{xy}$:

- Dove *L*_{xy} è la distanza tra
 - Vertice primario dell'evento (Z/H)
 - Vertice comune della coppia di muoni nel piano trasverso
- Suggerimento che i candidati J/Ψ ricostruiti nei dati (come per il segnale) sono prodotti in modo prompt al punto di interazione pp