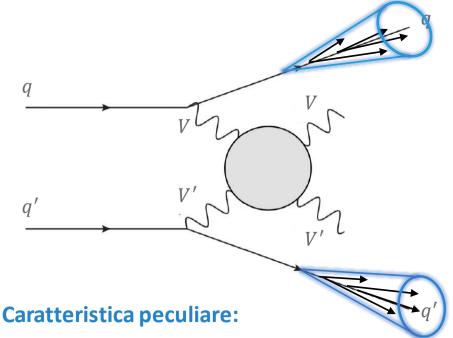


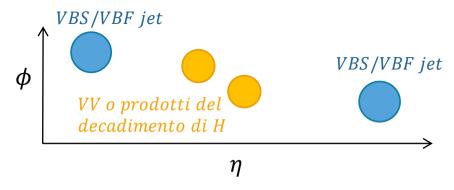
Risultati recenti di VBS e VBF con gli esperimenti ATLAS e CMS

BENEDETTA CAMAIANI


A nome delle collaborazioni ATLAS e CMS

Incontri di Fisica delle Alte Energie

Catania, 12-14 Aprile 2023

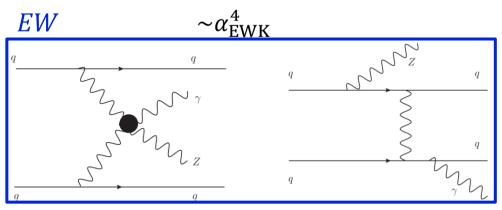

Introduzione

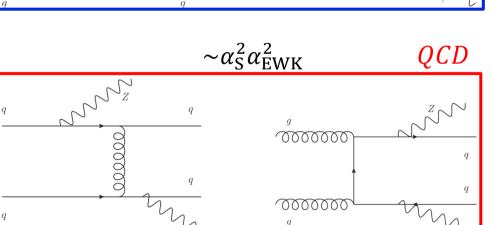
 La natura dei processi di Scattering/Fusione di bosoni vettori (VBS/VBF) è strettamente legata alla rottura della simmetria elettrodebole del Modello Standard (MS)

- Processi rari, estremamente sensibili ad effetti di nuova fisica
- Test del settore elettrodebole del MS alla scale del TeV
- Auto-accoppiamenti dei bosoni vettori e accoppiamenti con il bosone di Higgs
- Sensibili agli accoppiamenti triplici e quartici anomali tra bosoni di gauge (aTGC/aQGC)

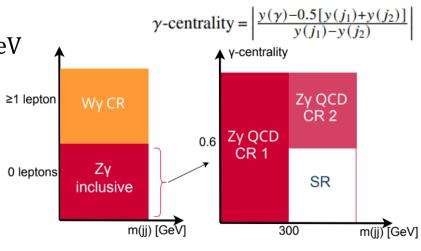
 \rightarrow 2 jet adronici *forward-backward* con grande massa invariante m_{ij} e ben separati in pseudorapidità ($\Delta \eta_{ij}$)

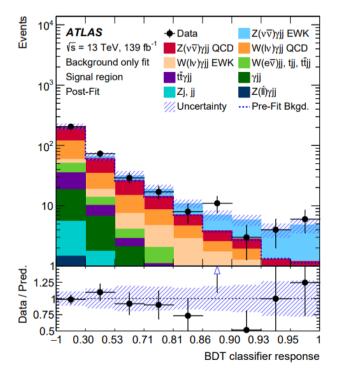
• Risultati recenti degli esperimenti ATLAS e CMS utilizzando tutto il dataset del Run2 a $\sqrt{s}=13~{\rm TeV}~({\it L}\sim140~{\rm fb}^{-1})$


Produzione elettrodebole $Z(\nu\bar{\nu})\gamma jj$


Accettato dalla rivista Journal of High Energy Physics

Arxiv:2208.12741


Produzione elettrodebole $Z(\nu\bar{\nu})\gamma jj$ (1)


- $Z \rightarrow \nu \bar{\nu}$
 - $BR(Z \to \nu \bar{\nu}) > BR(Z \to \ell \bar{\ell})$
 - Miglior controllo del fondo rispetto a canali adronici
- Fotone isolato con $p_T^{\gamma} > 150 \text{ GeV}$ Energia trasversa mancante Almeno due jet adronici

- Fondi principali:
 - $Z(\nu\bar{\nu})\gamma jj$ tramite QCD, misurato in $Z\gamma$ CR1
 - $W(\ell \nu) \gamma jj (EWK + QCD)$, misurato in $W \gamma$ CR
- Selezione degli eventi di segnale tramite classificatore basato su un Boosted Decision Tree (BDT), allenato usando la selezione $Z\gamma$ inclusiva (alcune variabili di input: m_{jj} , Δy_{jj} , E_{miss}^T , $p_T(j_1)$, $\eta(j_2)$)

Produzione elettrodebole $Z(\nu\bar{\nu})\gamma jj$ (2)

- Estrazione del segnale tramite fit di massima verosimiglianza in bin:
 - BDT output in SR
 - m_{ij} in $Z\gamma$ CRs e $W\gamma$ CR
- \rightarrow Sezione d'urto fiduciale osservata: $\sigma_{Z\gamma \rm EWK} = 0.77^{+0.34}_{-0.30}~{\rm fb}$
- Predizione al NLO: $\sigma_{Z\gamma EWK}^{pred} = 0.98 \pm 0.02$ (stat.) ± 0.09 (scale) ± 0.02 (PDF) fb
- \rightarrow Evidenza della produzione elettrodebole con significanza osservata di 3.2σ (attesa 3.7σ)
- Combinazione con la <u>precedente misura di ATLAS</u> ($15 < p_T^{\gamma} < 110~{
 m GeV}$)
 - \rightarrow Significanza osservata 6.3 σ (attesa 6.6 σ)
- Produzione elettrodebole usata per porre limiti sugli accoppiamenti quartici anomali tra bosoni di gauge (aQGC)
 - Limiti ai parametri di dimensione 8 di EFT
 - Competitivi o più stringenti rispetto ai risultati precedenti di ATLAS e CMS
 - Sensibili solo al vertice quartico neutro

Coefficient	$E_{\rm c}$ [TeV]	Observed limit [TeV ⁻⁴]	Expected limit [TeV ⁻⁴]
f_{T0}/Λ^4	1.7	$[-8.7, 7.1] \times 10^{-1}$	$[-8.9, 7.3] \times 10^{-1}$
f_{T5}/Λ^4	2.4	$[-3.4, 4.2] \times 10^{-1}$	$[-3.5, 4.3] \times 10^{-1}$
f_{T8}/Λ^4	1.7	$[-5.2, 5.2] \times 10^{-1}$	$[-5.3, 5.3] \times 10^{-1}$
f_{T9}/Λ^4	1.9	$[-7.9, 7.9] \times 10^{-1}$	$[-8.1, 8.1] \times 10^{-1}$
f_{M0}/Λ^4	0.7	$[-1.6, 1.6] \times 10^2$	$[-1.5, 1.5] \times 10^2$
f_{M1}/Λ^4	1.0	$[-1.6, 1.5] \times 10^2$	$[-1.4, 1.4] \times 10^2$
f_{M2}/Λ^4	1.0	$[-3.3, 3.2] \times 10^1$	$[-3.0, 3.0] \times 10^1$

Produzione elettrodebole $W\gamma jj$

Accettato dalla rivista Physical Review D

Arxiv:2212.12592

Produzione elettrodebole $W\gamma ij$ (1)

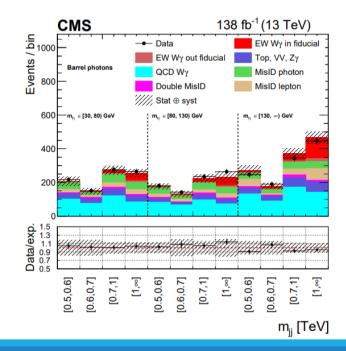
EW Wyjj

 e/μ isolato ad alto p_T

Energia trasversa mancante ($W \rightarrow \ell \nu$)

Fotone ad alto p_T

Due jet adronici con alta m_{ij} e ben separati in η


Barrel $|\eta_{\nu}| < 1.444$

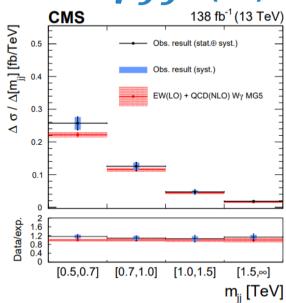
Endcap $1.566 < |\eta_{\gamma}| < 2.5$

Processi di fondo:

 W^+

- $W\gamma jj$ tramite QCD, misurato in una CR dedicata
- W+jets ed eventi con quark top, dove i jet vengono erroneamente ricostruiti come fotoni
- Estrazione del segnale tramite fit di massima verosimiglianza in bin 2D di m_{ij} VS $m_{\ell \nu}$
 - ightarrow Prima osservazione della produzione elettrodebole a $\sqrt{s}=13~{
 m TeV}$ con significanza di 6.0σ (significanza attesa 6.08σ)

Produzione elettrodebole $W\gamma ij$ (2)



 Misura fiduciale e differenziale della sezione d'urto di produzione elettrodebole (EW) e totale (EW+QCD)

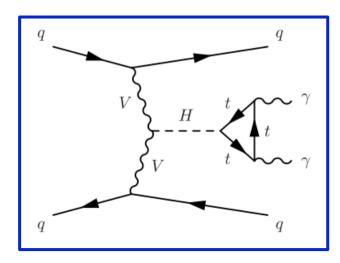
$$\sigma_{\rm EW}^{\rm fid} = 23.5 \pm 2.8 \, ({\rm stat})^{+1.9}_{-1.7} \, ({\rm theo})^{+3.5}_{-3.4} \, ({\rm syst}) \, {\rm fb}$$

$$\sigma_{\text{EW+OCD}}^{\text{fid}} = 113 \pm 2.0 \, (\text{stat})_{-2.3}^{+2.5} \, (\text{theo})_{-13}^{+13} \, (\text{syst}) \, \text{fb}$$

- Componente elettrodebole sensibile agli operatori EFT tramite effetti di accoppiamenti quartici anomali tra bosoni di gauge (aQGC)
 - Limiti ai parametri di dimensione 8
 - Più stringenti fino ad oggi

Expected limit	Observed limit	$U_{\rm bound}$
$-5.1 < f_{M,0}/\Lambda^4 < 5.1$	$-5.6 < f_{M,0}/\Lambda^4 < 5.5$	1.7
$-7.1 < f_{M.1}/\Lambda^4 < 7.4$	$-7.8 < f_{M.1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M,3}/\Lambda^4 < 2.5$	$-2.7 < f_{M,3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M,4}/\Lambda^4 < 3.3$	$-3.7 < f_{M,4}/\Lambda^4 < 3.6$	2.3
$-3.4 < f_{M,5}/\Lambda^4 < 3.6$	$-3.9 < f_{M,5}/\Lambda^4 < 3.9$	2.7
$-13 < f_{M,7}/\Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2
$-0.43 < f_{T,0}/\Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T,1}/\Lambda^4 < 0.31$	$-0.31 < f_{T,1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	2.3
$-0.29 < f_{T.5}/\Lambda^4 < 0.31$	$-0.31 < f_{T5}/\Lambda^4 < 0.33$	2.6
$-0.23 < f_{T.6}/\Lambda^4 < 0.25$	$-0.25 < f_{T.6}/\Lambda^4 < 0.27$	2.9
$-0.60 < f_{T,7}/\Lambda^4 < 0.68$	$-0.67 < f_{T,7}/\Lambda^4 < 0.73$	3.1

Sezione d'urto fiduciale e differenziale VBF in $H \rightarrow \gamma\gamma$


Accettato dalla rivista Journal of High Energy Physics

Arxiv:2208.12279

$VBF H \rightarrow \gamma \gamma (1)$

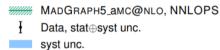
- Ampio set di risultati:
 - Sezione d'urto fiduciale inclusiva
 - Sezioni d'urto fiduciali differenziali
 - Misura doppio-differenziale

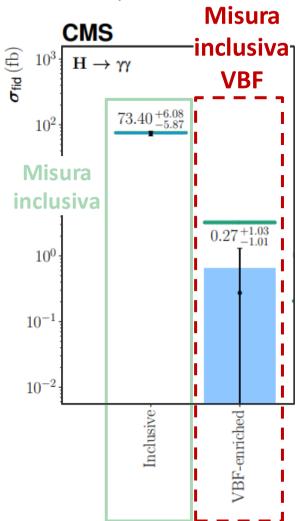
- Processi di fondo:
 - Eventi di QCD $\gamma\gamma$
 - Eventi con due jet e γ +jet, dove i jet vengono erroneamente ricostruiti come fotoni

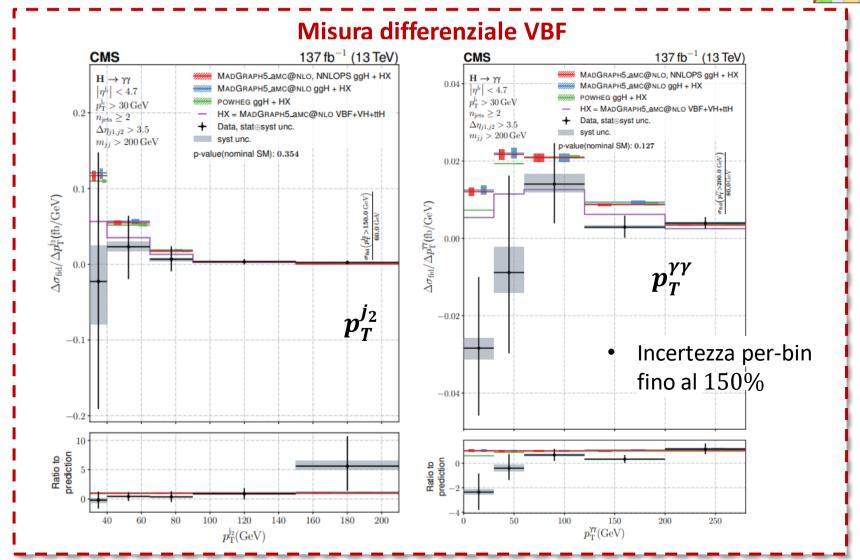
Analisi nello spazio delle fasi VBF

Spazio fiduciale

$$\begin{array}{c|cccc} p_{\mathrm{T}}^{\gamma_1}/m_{\gamma\gamma} & > 1/3 \\ p_{\mathrm{T}}^{\gamma_2}/m_{\gamma\gamma} & > 1/4 \\ \mathcal{I}_{\mathrm{gen}}^{\gamma} & < 10\,\mathrm{GeV} \\ & |\eta^{\gamma}| & < 2.5 \end{array} \qquad \begin{array}{c} \mathrm{Energia\ adronica} \\ \mathrm{totale\ in\ un\ cono} \\ \mathrm{con\ } \Delta R = 0.3 \\ \mathrm{attorno\ al\ fotone} \end{array}$$




Regione VBF


$$\begin{array}{l} n_{\rm jets} \geq 2 \\ p_{\rm T}^{\rm j} > 30\,{\rm GeV} \\ |\eta^{\rm j}| < 4.7 \\ \Delta\eta^{\rm jj} > 3.5 \\ m^{\rm jj} > 200\,{\rm GeV} \end{array} \longrightarrow \left\{ \begin{array}{l} p_{\rm T}^{\gamma\gamma} \\ p_{\rm T}^{\rm j_2} \\ |\Delta\phi_{\rm j_1,j_2}| \\ |\Delta\phi_{\gamma\gamma,{\rm j_1j_2}}| \end{array} \right.$$

$VBF H \rightarrow \gamma \gamma (2)$

Proprietà di CP del vertice HVVVBF in $H \rightarrow \gamma\gamma$

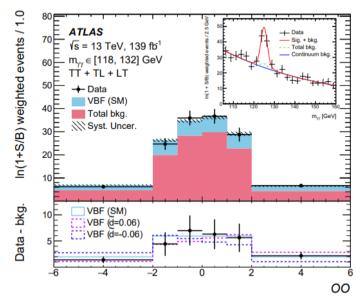
Accettato dalla rivista Physical Review Letters

Arxiv:2208.02338

Proprietà di CP in $VBF H \rightarrow \gamma\gamma$ (1)

- Qualsiasi deviazione da un'interazione di tipo CP-pari del bosone di Higgs con le altre particelle del MS potrebbe indicare nuova fisica oltre il MS (BSM)
- Una componente CP-dispari nel vertice di accoppiamento HVV (V=W,Z) può essere descritta mediante un approccio EFT, aggiungendo operatori di dimensione 6 alla Lagrangiana del MS
- Si può costruire una osservabile CP-dispari a partire dal quadrimpulso del bosone di Higgs (H) e dei due jet adronici:

«Osservabile ottimale»
$$OO = 2 \cdot \frac{\text{Re}(\mathcal{M}_{\text{SM}}^* \cdot \mathcal{M}_{\text{CP-dispari}})}{|\mathcal{M}_{\text{SM}}|^2}$$


Indipendente dal canale di $OO = 2 \cdot \frac{\text{Re}(\mathcal{M}_{\text{SM}}^* \cdot \mathcal{M}_{\text{CP-dispari}})}{|\mathcal{M}_{\text{SM}}|^2}$ decadimento, già introdotto $\frac{1}{|\mathcal{M}_{\text{SM}}|^2}$

- Il MS predice una distribuzione di 00 simmetrica e a media nulla, ogni effetto di asimmetria indica quindi il contributo di termini che violano CP
- \rightarrow In questa analisi vengono costretti i coefficienti di Wilson che moltiplicano gli operatori che descrivono accoppiamenti HVVcon *CP*-dispari:
 - Base HISZ
 - **Base Warsaw**

Proprietà di **CP** in $VBF H \rightarrow \gamma\gamma$ (2)

- Sensibilità agli eventi di segnale massimizzata tramite due BDT, allenati usando le stesse variabili di input (ad esempio m_{ij} , $\Delta\eta_{ij}$, p_T^{Hjj} , $\Delta\phi(\gamma\gamma,jj)$, ΔR_{vi}^{min}):
 - $BDT_{VBF/qqF}$ per discriminare eventi di Gluon Fusion
 - BDT_{VBF/continuum} per discriminare eventi di fondo continuo ($\gamma\gamma$, γj o jj)
- Tre regioni di segnale (SR) definite tagliando sugli output dei BDT
- Estrazione del segnale tramite fit della distribuzione di $m_{\gamma\gamma}$ in bin di OO nelle SR

- Risultati nella base di HISZ: ($\tilde{d}_{B} = \tilde{d}_{I}$, Terzo coefficiente nullo)
 - Sensibilità sufficiente per CL 95%
 - Risultati compatibili con il MS
 - Precisione limitata da incertezza statistica (CL 95% $\Delta_{syst} < 2\%$)

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	_	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]

Combinazione con la precedente misura $\underline{H} \rightarrow \tau \tau$

13/04/2023 BENEDETTA CAMAIANI - IFAE 2023 14

^{*}Risultati nella base di Warsaw in backup

Conclusioni

- I processi VBS/VBF giocano un ruolo fondamentale all'interno del Modello Standard
- Sono state presentare alcune delle più recenti misure VBS/VBF pubblicate dagli esperimenti ATLAS e CMS, in cui sono stati usati i dati raccolti durante il Run2 di LHC
- Il Run3 di LHC permetterà un nuovo set di misure VBS/VBF che consentirà una comprensione ancora più accurata del settore elettrodebole del Modello Standard

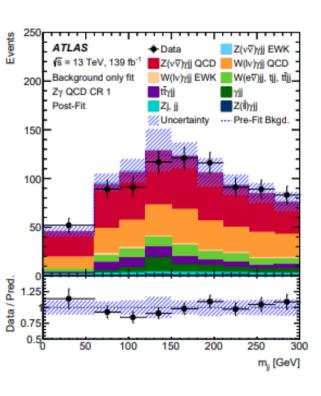
Grazie per l'attenzione

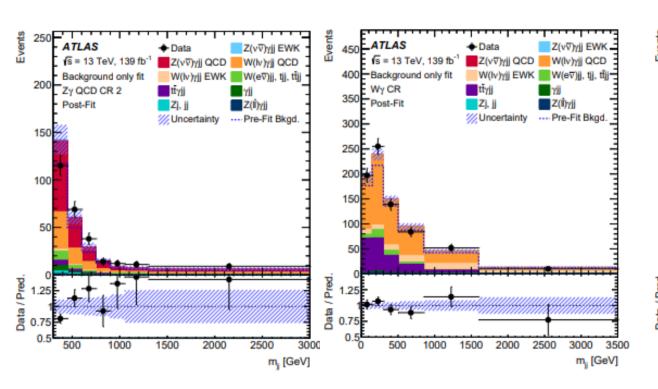
Backup

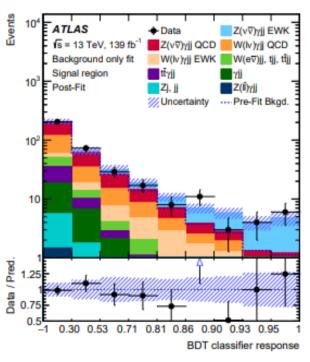
Produzione elettrodebole $Z(\nu\bar{\nu})\gamma jj$ (3)

Physics process	Generator	Parton shower	Cross-section order in pQCD	Tune	PDF set
$Z(\nu\bar{\nu})\gamma jj$ EWK, $W(\ell\nu)\gamma jj$ EWK	MadGraph5_aMC@NLO 2.6.2	Рутніа 8.235	LO, K-factor to NLO	A14	NNPDF2.3Lo
$Z\gamma jj$ interference, aQGC	MadGraph5_aMC@NLO 2.6.7	Рұтніа 8.244	LO	A14	NNPDF2.3Lo
Alternative $Z(\nu\bar{\nu})\gamma jj$ EWK & $W(\ell\nu)\gamma jj$ EWK	MadGraph5_aMC@NLO 2.6.2	Herwig 7.13	LO	A14	NNPDF2.3Lo
$t\bar{t}\gamma jj$	MadGraph5_aMC@NLO 2.3.3	Рутніа 8.212	LO, K-factor to NLO	A14	NNPDF2.3Lo
Alternative $Z(\nu\bar{\nu})\gamma jj$	MadGraph5_aMC@NLO 2.3.3	Рутніа 8.212	NLO	A14	NNPDF2.3Lo
$Z(\nu\bar{\nu})\gamma jj, W(\ell\nu)\gamma jj, Z(\ell\bar{\ell})\gamma jj$	Sherpa 2.2.2	SHERPA 2.2.2	NLO	default	NNPDF3.0nnlo
$W(ev)jj, W(\tau v)jj, Z(v\bar{v})jj, Z(e\bar{e})$	Sherpa 2.2.1	SHERPA 2.2.1	NLO	default	NNPDF3.0nnlo
γjj	Sherpa 2.1	Sherpa 2.1	LO, K-factor to NLO	default	CT10nlo
jj	Sherpa 2.1.1	SHERPA 2.1.1	LO	default	CT10nlo
$tjj, t\bar{t}jj$	Powneg Box v2	Рутніа 8.230	NLO	A14	NNPDF3.0nlo, NNPDF2.3lo

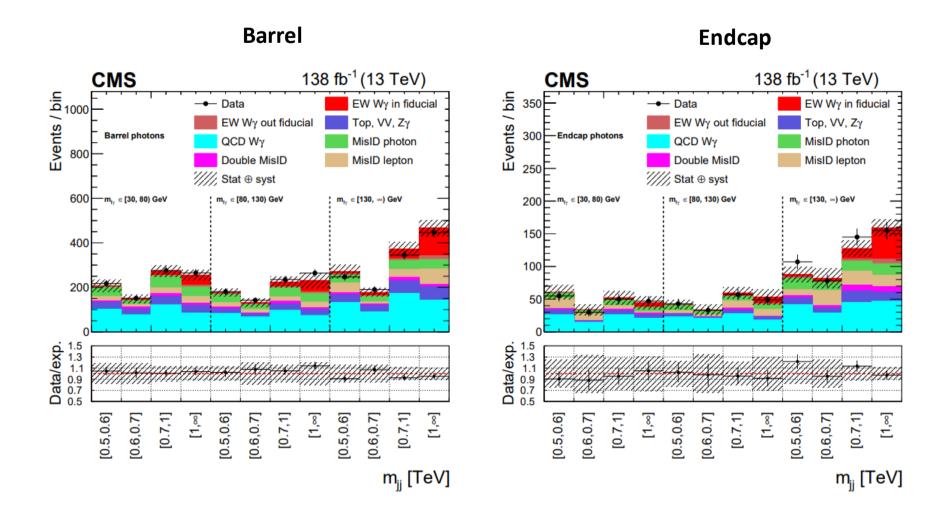
Produzione elettrodebole $Z(\nu\bar{\nu})\gamma jj$ (4)




Definizione del volume fiduciale


Selections	Cut value			
$E_{ m T}^{ m miss}$	> 120 GeV			
$\dot{E}_{ m T}^{\gamma}$	> 150 GeV			
Number of isolated photons	$N_{\gamma} = 1$			
Photon isolation	$E_{\rm T}^{\rm cone40} < 0.022 p_{\rm T} + 2.45 \text{ GeV}, p_{\rm T}^{\rm cone20}/p_{\rm T} < 0.05$			
Number of jets	$N_{\rm jets} \ge 2 \text{ with } p_{\rm T} > 50 \text{ GeV}$			
Overlap removal	$\Delta R(\gamma, \text{jet}) > 0.3$			
Lepton veto	$N_e = 0, N_{\mu} = 0$			
$ \Delta\phi(\gamma, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) $	> 0.4			
$ \Delta\phi(j_1,ec{p}_{\mathrm{T}}^{\mathrm{miss}}) $	> 0.3			
$ \Delta\phi(j_2, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) $	> 0.3			
m_{jj}	> 300 GeV			
γ -centrality	< 0.6			

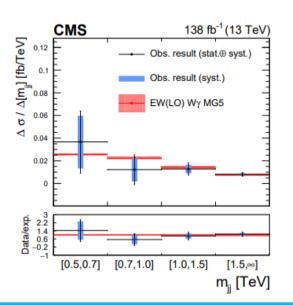
Produzione elettrodebole $Z(\nu\bar{\nu})\gamma jj$ (5)

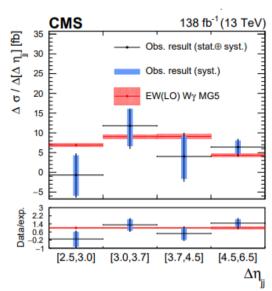

Produzione elettrodebole $Z(\nu\bar{\nu})\gamma jj$ (6)

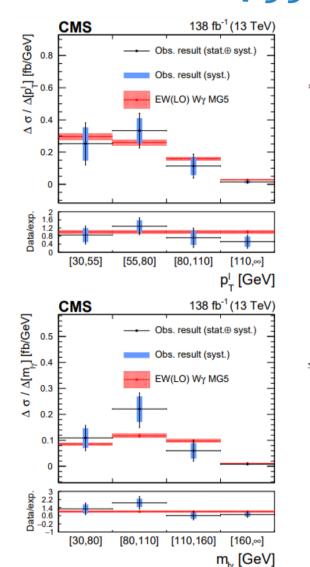
$\Delta\sigma/\sigma$ [%]
-3.2/+3.4
-0.3/+1.7
-0.4/+0.5
-1.8/+2.2
-1.7/+3.2
-0.9/+2.1
-1.2/+2.6
-0.6/+2.6
-6 /+12
-15 / +16
-5.3/+7.7
-0.9/+1.2
-1.2/+2.6
-4.4/+4.4

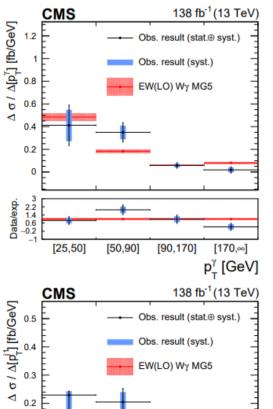
Produzione elettrodebole $W\gamma jj$ (3)

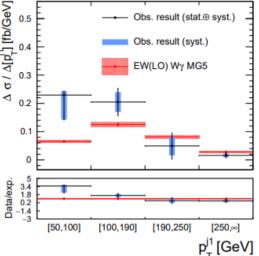
Produzione elettrodebole $W\gamma jj$ (4)


Selezione fiduciale:

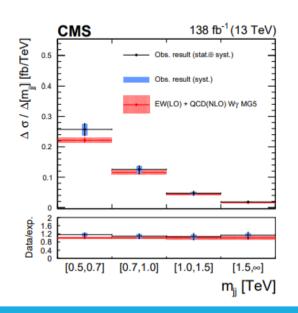

- 2 jet con $p_T^j > 50$ GeV e $|\eta| < 4.7$
- $p_T^{\gamma} > 25 \text{ GeV e } |\eta| < 1.4442 \text{ o } 1.566 < |\eta| < 2.5$
- $p_T^{\ell 1} > 35 \text{ GeV e } |\eta| < 2.4$
- $p_T^{miss} > 30 \text{ GeV e } m_T^W > 30 \text{ GeV}$
- $m_{ij} > 500 \text{ GeV e } |\eta_{ij}| < 2.5$
- ΔR_{jj} , $\Delta R_{j\gamma}$, $\Delta R_{j\ell}$, $\Delta R_{\ell\gamma} > 0.5$

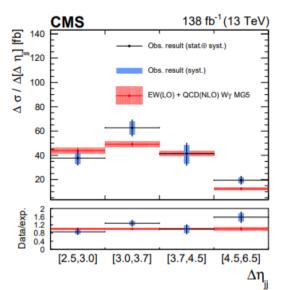

Produzione elettrodebole $W\gamma jj$ (5)

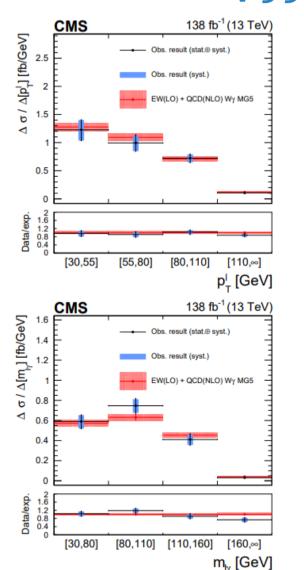


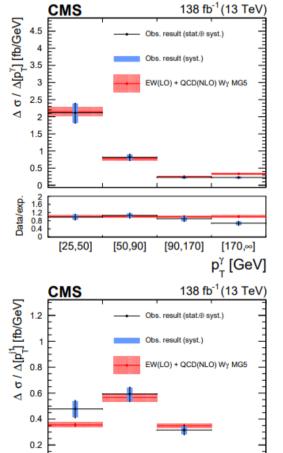

Misura differenziale della produzione EWK

Produzione elettrodebole $W\gamma jj$ (6)




[250,∞]


p_T^{j1} [GeV]


[190,250]

 Misura differenziale della produzione EWK+QCD

[100,190]

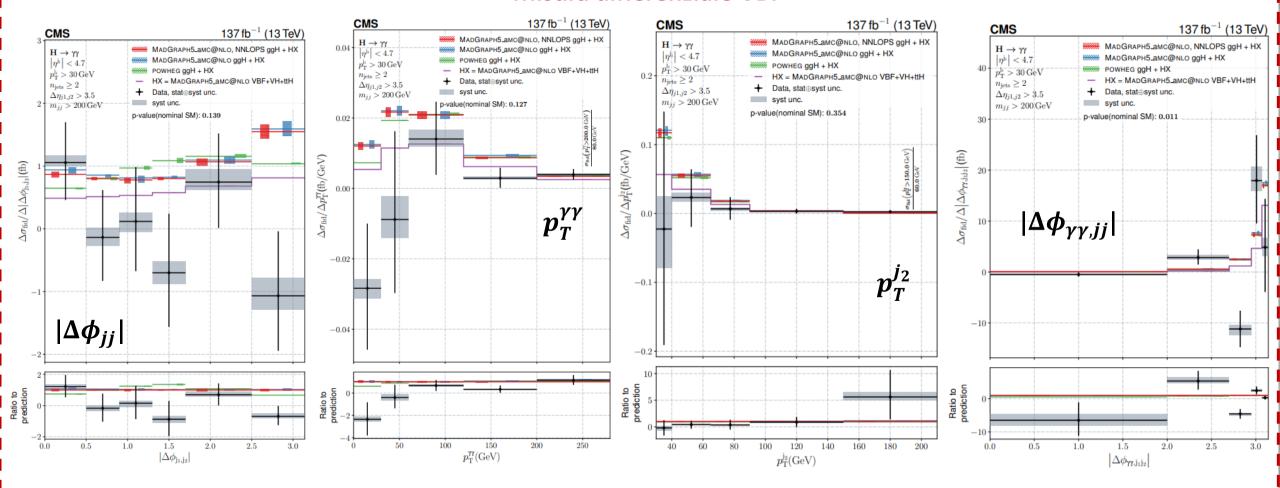
Data/exp. 2 1.6 8.0 0.4 0.0 0

$VBF H \rightarrow \gamma \gamma$ (3)

 Definizione dello spazio delle fasi fiduciale e osservabili di interesse

Phase space region	Observable Bin boundaries								
	$p_{\mathrm{T}}^{\gamma\gamma}$	0	5	10	15	20	25	30	35
		45	60	80	100	120	140	170	200
		250	350	450	∞				
	n _{jets}	0	1	2	3	≥ 4			
	$ y^{\gamma\gamma} $	0.0	0.1	0.2	0.3	0.45	0.6	0.75	0.90
Baseline	1 (0*)	2.5	0.05	0.45	0.00		0.45		. ==
$p_{\mathrm{T}}^{\gamma_1}/m_{\gamma\gamma} > 1/3$	$ \cos(\theta^*) $	0.0 1.0	0.07	0.15	0.22	0.35	0.45	0.55	0.75
$p_{\mathrm{T}}^{\gamma_{1}}/m_{\gamma\gamma} > 1/4$	$ \phi_{\eta}^* $	0.0	0.05	0.1	0.2	0.3	0.4	0.5	0.7
$ \eta^{\gamma} < 2.5$	$ \Psi_{\eta} $	1.0	1.5	2.5	4.0	∞	0.4	0.5	0.7
$\mathcal{I}_{\mathrm{gen}}^{\gamma} < 10\mathrm{GeV}$	$p_{\mathrm{T}}^{\gamma\gamma}$, $n_{\mathrm{jets}}=0$	0	5	10	15	20	25	30	35
gen	P1 / ljets	45	60	∞					
	$p_{\mathrm{T}}^{\gamma\gamma}$, $n_{\mathrm{jets}}=1$	0	30	60	100	170	∞		
	$p_{\mathrm{T}}^{\dot{\gamma}\dot{\gamma}}, n_{\mathrm{jets}} > 1$	0	100	170	250	350	∞		
	n _{bjets}	0	1	≥ 2					
	$n_{ m leptons}$	0	1	≥ 2					
	$p_{\mathrm{T}}^{\mathrm{miss}}$	0	30	50	100	200	∞		
	$p_{\mathrm{T}}^{\mathrm{j_{1}}}$	30	40	55	75	95	120	150	200
		∞							
4.1.	$ y^{j_1} $	0.0	0.3	0.6	0.9	1.2	1.6	2.0	2.5
1-jet	$ \Delta\phi_{\gamma\gamma,j_1} $	0.0	2.0	2.6	2.85	3.0	3.07	π	
Baseline + ≥1 jet	$ \Delta y_{\gamma\gamma,j_1} $	0.0	0.3	0.6	1.0	1.4	1.9	2.5	∞
$p_{\mathrm{T}}^{\mathrm{J}} > 30\mathrm{GeV}$ $ \eta^{\mathrm{j}} < 2.5$	$\tau_{\rm C}^{\rm J}$.	< 15	15	20	30	50	80	∞	
$ \eta^{i} < 2.5$	$p_{\mathrm{T}}^{\dot{\gamma}\gamma}$, $\tau_{\mathrm{C}}^{\mathrm{j}} < 15 \; \mathrm{GeV}$	0	45	120	∞				
	$p_{\mathrm{T}}^{\gamma\gamma}$, 15 GeV $\leq \tau_{\mathrm{C}}^{\mathrm{j}} <$ 25 GeV	0	45	120	∞				
	$p_{\mathrm{T}}^{\gamma\gamma}$, 25 GeV $\leq \tau_{\mathrm{C}}^{\mathrm{J}} < 40$ GeV	0	120	∞					
	$p_{\mathrm{T}}^{\gamma\gamma}$, 40 GeV $\leq \tau_{\mathrm{C}}^{\mathrm{J}}$	0	200	350	∞				
	$p_{ m T}^{ m j_2}$	30	40	65	90	150	∞		
2-jets	$ y^{j_2} $	0.0	0.6	1.2	1.8	2.5	3.5	5.0	
Baseline + \geq 2 jets $p_{\rm T}^{\rm j} > 30 {\rm GeV}$ $ \eta^{\rm j} < 4.7$	$ \Delta \phi_{\mathbf{j}_1,\mathbf{j}_2} $	0.0	0.5	0.9	1.3	1.7	2.5	π	
	$ \Delta\phi_{\gamma\gamma,j_1j_2} $	0.0	2.0	2.7	2.95	3.07	π		
	$ \overline{\eta}_{ar{j}_1ar{j}_2}-\eta_{\gamma\gamma} \ m^{jj}$	0.0	0.2	0.5	0.85	1.2	1.7	∞	
		0	75	120	180	300	500	1000	∞
	$ \Delta \eta_{j_1j_2} $	0.0	0.7	1.6	3.0	5.0	∞		
VBF-enriched	$p_{\mathrm{T}}^{\gamma\gamma}$ $p_{\mathrm{T}}^{\mathrm{l}_{2}}$ $p_{\mathrm{T}}^{\mathrm{l}_{2}}$ $ \Delta\phi_{\mathrm{j}_{1},\mathrm{j}_{2}} $	0	30	60	120	200	∞		
2 -jets + $n_{\rm jets} \ge 2$	$p_{\mathrm{T}}^{p_{\mathrm{T}}^{2}}$	30	40	65	90	150	∞ -		
$\Delta \eta^{\rm jj} > 3.5$	$ \Delta \phi_{\mathbf{j}_1,\mathbf{j}_2} $	0.0	0.5	0.9	1.3	1.7	2.5	π	
$m^{jj} > 200 \mathrm{GeV}$	$ \Delta\phi_{\gamma\gamma,j_1j_2} $	0.0	2.0	2.7	2.95	3.07	π		

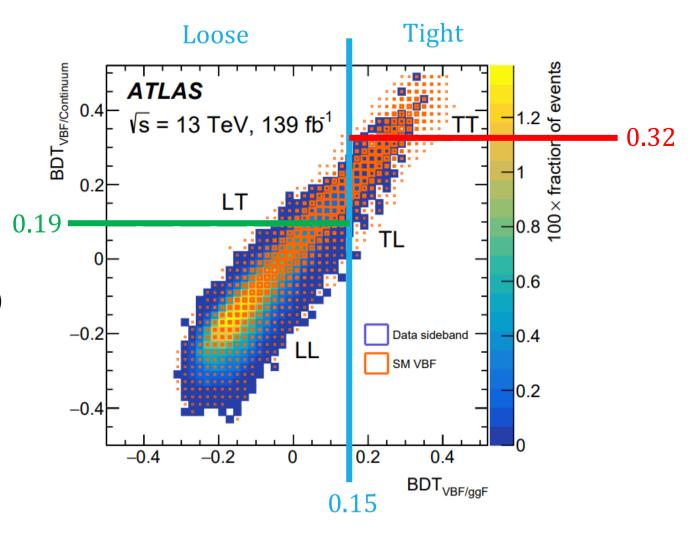
$VBF H \rightarrow \gamma \gamma (4)$


- Categorizzazione degli eventi basata su estimatore della risoluzione di massa decorrelato (σ_m^D) e sull'output di un classificatore di fotoni basato su un BDT (photon ID MVA):
 - $\frac{\sigma_m}{m}$ è l'estimatore della risoluzione di massa per una coppia di fotoni, definito come la somma quadratica della risoluzione energetica relativa per ogni fotone
 - Viene decorrelato rispetto alla massa invariante del sistema $m_{
 u
 u}
 ightarrow \sigma_m^D$
 - → Decorrelazione necessaria per evitare distorsioni delle distribuzioni dei fondi

- Ottimizzazioni separate per i tre anni in tutto lo spazio delle fasi fiduciali
- Vengono definite 3 categorie di σ_m^D per ogni anno

$VBF H \rightarrow \gamma \gamma$ (5)

Misura differenziale VBF



Proprietà di **CP** in $VBF H \rightarrow \gamma\gamma$ (3)

- Distribuzione 2D degli output dei due BDT nella regione $m_{\gamma\gamma} \in [104,118] \text{GeV}$ o [132,160] GeV
 - Gli eventi vengono separati in «tight» (T) e «loose» (L) tagliando su $\mathrm{BDT}_{VBF/ggF}$ (linea azzurra)
 - Ulteriore selezione tagliando su $BDT_{VBF/continuum}$ (linea verde e linea rossa)

Proprietà di CP in $VBF H \rightarrow \gamma\gamma$ (4)

Base HISZ

 $\tilde{d}_{R} = \tilde{d}$ Terzo coefficiente nullo

- Sensibilità sufficiente per CL 95%
- Risultati compatibili con il MS
- Precisione limitata da incertezza statistica (CL 95% Δ_{syst} < 2%)

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	_	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]

Combinazione con la precedente misura $\underline{H} \rightarrow \tau \tau$

CL più stringenti rispetto alle misure

precedenti di ATLAS e CMS in 4ℓ

Base Warsaw

$$c_{H\tilde{B}} = c_{H\tilde{B}W} = 0$$

$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]