

Impatto del MIP timing detector sulla fisica di CMS per HL-LHC

> Giulia Sorrentino Per la Collaborazione CMS MTD

IFAE 2023 - Incontri di Fisica delle Alte Energie Catania, 12-14 Aprile 2023

II MIP timing detector

Fase di alta luminosità per LHC (HL-LHC):

- Luminosità istantanea attesa: 5-7.5 [µb∘s]-1 (~2 [µb∘s]-1 durante Run 3)
- ▶ 140-200 vertici di PU per BX (~60 durante Run 3)

MTD:

Misura tempo di produzione delle MIPs

- Vertici (e tracce) 4D
- Risoluzione temporale di 30-40 ps
 (50-60 ps alla fine delle operazioni)

- Miglioramento della ricostruzione e selezione degli oggetti di fisica grazie alla mitigazione degli effetti di PU (analisi di riferimento: produzione HH)
- Introduzione di nuove variabili temporali (ricerca di particelle long lived)
- Introduzione della PID tramite misura del tempo di volo (fisica del b, fisica degli ioni pesanti)

IFAE2023

z (cm)

Risoluzione temporale

- <u>CMS-TDR-020</u>: primo studio impatto di MTD sulla fisica di CMS
- <u>CMS DP-2022/025</u>: inclusione dei diversi scenari temporali e delle performance della PID

Barrel timing layer (BTL)

Cristalli scintillanti (LYSO-Ce) + SiPM

3 scenari considerati → peggioramento della risoluzione a causa delle radiazioni cui sono soggetti i SiPM

- 35 ps scenario nominale all'inizio delle operazioni
- 50 ps scenario intermedio alla fine delle operazioni (3000 fb⁻¹) in considerazione della degradazione dei moduli
- 70 ps scenario estremo alla fine delle operazioni che include massima degradazione dei moduli + margini di sicurezza sull'incertezza del livello di radiazione

Endcap timing layer (ETL)

Ultra-Fast Silicon Detectors
 Risoluzione temporale eccellente
 fino alla fine delle operazioni
 (< 40 ps)

Tra gli obiettivi principali del programma di fisica per HL-LHC

 Unico processo che permette la misura diretta dell'auto-accoppiamento triplo dell'Higgs λ_{HHH}

Impatto di MTD studiato su 5 canali di decadimento, successivamente combinati

Dove MTD contribuisce:

- Isolamento di leptoni e fotoni
- b-tagging
- Risoluzione pr^{miss}
- Identificazione degli elettroni

Selezione aggiuntiva Δt (track, PV), migliora efficienza isolamento fino al 10% (18%) in BTL (ETL)

Dove MTD contribuisce:

- Isolamento di leptoni e fotoni
- b-tagging
- ► Risoluzione p^{miss}
- Identificazione degli elettroni

Risoluzione migliorata del 10%

 → miglioramento simile per la risoluzione della massa invariante ττ

 Migliore separazione tra segnale bbττ e fondo tt

35 ps BTL, 35 ps ETL						
Channel	No MTD	ETL Only	BTL Only	MTD		
bbbb	0.88	0.90	0.93	0.95		
bb au au	1.30	1.38	1.52	1.60		
$bb\gamma\gamma$	1.70	1.75	1.85	1.90		
Combined	2.31	2.40	2.57	2.66		

→ 2.75 con bbWW e bbZZ

Con MTD, guadagno	70 ps BTL, 35 ps ETL					
70ps (BTL) rispetto allo	Channel	No MTD	ETL Only	BTL Only	MTD	
scenario senza MTD	bbbb	0.88	0.90	0.92	0.94	
	bb au au	1.30	1.38	1.36	1.44	
	$bb\gamma\gamma$	1.70	1.75	1.76	1.81	
	Combined	2.31	2.40	2.41	2.51	
				-	→ 2.60 con	bbWW e bb

- Quasi 3σ di significatività attesa per la produzione HH (3000 fb⁻¹)
- Per ottenere la stessa significatività senza MTD servirebbe un aumento di luminosità integrata, rispettivamente, del 31% e 17%

Ricerca di particelle LL: delayed photons

- La **risoluzione del tempo di volo** del fotone è un elemento cruciale
- Migliore risoluzione → migliore separazione del segnale d al fondo
 → possono essere sondate vite medie più brevi

$$\sigma_{\rm TOF} = \sqrt{\sigma_{\rm vtx}^2 + \sigma_{\rm ECAL}^2}$$

 MTD determinante per σ_{vtx} (~10 ps)
 → misurato a partire dalla risoluzione delle tracce associate al vertice primario

Risoluzione ECAL (Fase 2) ~ 30 ps

Giulia Sorrentino

Ricerca di particelle LL: Heavy Stable Charged Particles 9

- Vita media molto lunga
- Velocità della particella (β) misurata da MTD usata come discriminante

 Risoluzione temporale determinante nella separazione tra segnale e fondo
 TDR: curva ROC segnale vs. fondo

IFAE2023

 $c(t_{MTD} - t_{PV})$

L_{pathlenght}

β

Giulia Sorrentino

Ricerca di particelle LL: Heavy Stable Charged Particles 10

 $c(t_{MTD} - t_{PV})$

L_{pathlenght}

β

- Vita media molto lunga
- Velocità della particella (β) misurata da MTD usata come discriminante
 - Risoluzione temporale determinante nella separazione tra segnale e fondo

Identificazione di particelle (PID)

MTD abilita la PID tramite misura del tempo di volo
Derivazione della PID dagli algoritmi di *vertexing* 4D

La ricostruzione dei vertici 4D richiede in input il tempo della traccia estrapolato al punto di minimo approccio → implica assunzione sulla massa

Giulia Sorrentino

Violazione di CP in $B_S^0 \rightarrow J/\psi \phi(1020)$

- Analisi di riferimento per testare capacità della PID per la fisica del b (per gli studi sulla fisica degli ioni pesanti: <u>CMS-TDR-020</u> and <u>CMS-</u> <u>DP-2021-037</u>)
- ► Necessario accurato *flavor tagging* → incide sui termini sensibili alla fase di violazione di CP

La figura di merito utilizzata è il "tagging power"

- Efficienza di tagging $\varepsilon_{tag} = N_{tag}/N_{tot}$
- Mistag fraction $\omega_{tag} = N_{mistag}/N_{tag}$

$$\mathbf{P}_{\text{tag}} = \epsilon_{\text{tag}} (1 - 2\omega_{\text{tag}})^2$$

- DNN same-side tagger: utilizza la correlazione di carica tra il segno del quark s e la carica di un kaone soft proveniente dallo stesso vertice primario del mesone B
- DNN tagger aggiornato per incorporare le informazioni fornite dalla PID

PID scenario	Gains in P _{tag} (3000 fb ⁻¹)
MC truth	+66%
PID with $\sigma_{BTL} = 40 \text{ ps}$	+24%
PID with $\sigma_{BTL} = 70 \text{ ps}$	+14%

Guadagno in $P_{tag} \rightarrow$ simile guadagno in statistica

Conclusioni

- MTD è un rivelatore chiave per mantenere le performance di CMS eccellenti durante la fase di alta luminosità di LHC
 - Contributo importante in analisi cruciali (HH, violazione CP...)
 - New PID capabilities enabled by using TOF
- 30-40 ps di risoluzione temporale, a causa dei danni da radiazione aumento a 50-60 ps (per BTL) alla fine delle operazioni
- Il contributo di MTD rimane significativo, anche nello scenario più estremo considerato (70 ps)

Referenze: CMS-TDR-020, CMS DP-2022/025, CMS PAS FTR-18-041

35 ps BTL, 35 ps ETL					
Channel	No MTD	ETL Only	BTL Only	MTD	
bbbb	0.88	0.90	0.93	0.95	
bb au au	1.30	1.38	1.52	1.60	
$bb\gamma\gamma$	1.70	1.75	1.85	1.90	
Combined	2.31	2.40	2.57	2.66 → <mark>2</mark>	2.75 con bbWW e bbZZ
		•			
	$50 \mathrm{~ps}$]	BTL, 50 ps E	TL		
Channel	No MTD	ETL Only	BTL Only	MTD	
bbbb	0.88	0.90	0.93	0.95	
bb au au	1.30	1.36	1.44	1.50	
$bb\gamma\gamma$	1.70	1.72	1.78	1.80	
Combined	2.31	2.37	2.47	2.53 → <mark>2</mark>	2.63 con bbWW e bbZZ
	$70 \mathrm{\ ps}$ l	BTL, 35 ps E	TL		
Channel	No MTD	ETL Only	BTL Only	MTD	
bbbb	0.88	0.90	0.92	0.94	
bb au au	1.30	1.38	1.36	1.44	
$bb\gamma\gamma$	1.70	1.75	1.76	1.81	
Combined	2.31	2.40	2.41	2.51 → 2	2.60 con bbWW e bbZZ

- Quasi 3σ di significatività attesa per la produzione HH (3000 fb⁻¹)
- Per ottenere la stessa significatività senza MTD servirebbe un aumento di luminosità integrata, rispettivamente, del 31%, 20% e 17%

Identificazione di particelle (PID)

MTD abilita la PID tramite misura del tempo di volo
Derivazione della PID dagli algoritmi di *vertexing* 4D

► La ricostruzione dei vertici 4D richiede in input il tempo della traccia estrapolato al punto di minimo approccio → implica assunzione sulla massa

Procedura iterativa 4D (elementi principali)

• Ipotesi massa π → prima iterazione dell'algoritmo di vertexing 4D e calcolo t_{PV}

$$P|D \rightarrow \chi^2_{hyp} = \frac{(z_{PCA} - z_{PV})^2}{\sigma^2_{z_{PCA}}} + \frac{(t_{PCA,hyp} - t_{PV})^2}{\sigma^2_{t_{MTD}}}$$

 Seconda iterazione dell'algoritmo di vertexing 4D con nuova massa stimata tramite PID

Identificazione di particelle (PID): purezza

IFAE2023

Purezza calcolata usando eventi tt con PU 200

Giulia Sorrentino