Stato attuale e prospettive di fisica dell'esperimento JUNO

Vanessa Cerrone, per la collaborazione JUNO Università di Padova & INFN Padova

12-14 aprile 2023 -- Incontri di Fisica delle Alte Energie (IFAE 2023)

Università degli Studi di Padova

L'esperimento JUNO

Jiangmen Underground Neutrino Observatory

JUNO è un esperimento di neutrini in costruzione nel sud della Cina.

- 20 kton di scintillatore liquido
- Situato a 53 km da 8 reattori nucleari con potenza termica totale di 26.6 GW_{th}
- Obiettivo primario: determinazione dell'ordinamento di massa dei neutrini

Perché JUNO?

- Osservazione delle oscillazioni dei neutrini
 - Neutrini sono massivi
 - Autostati di massa (ν_i) \neq autostati di sapore (ν_{α})

- Ordinamento di massa: $\Delta m_{32}^2 \ge 0$? $\Delta m_{ij}^2 = m_i^2 - m_j^2$
- Metodi principali:
 - Oscillazioni nella materia con neutrini da acceleratore @ esperimenti a lunga distanza sorgente-rivelatore

- Oscillazioni nel vuoto con antineutrini $\overline{\nu}_e$ da reattore a media distanza (\approx 50 km)
 - \rightarrow Probabilità di sopravvivenza dei $\overline{\nu}_e$
 - \rightarrow Indipendenza da δ_{CP} e $~\theta_{23}$

13/04/23 Vanessa Cerrone – IFAE 2023

L'ordinamento di massa in JUNO

- Parametri solari Δm_{21}^2 , $\sin^2(2\theta_{12})$: oscillazione lenta con minimo ad una distanza di circa 50 km
- Parametri atmosferici Δm^2_{32} , $\sin^2(2\theta_{32})$:
 oscillazione veloce
- JUNO è il primo esperimento sensibile ad entrambe le oscillazioni → ordinamento di massa (MO) dall'interferenza
- Misura ambiziosa → limiti stringenti sul design del rivelatore (risoluzione energetica e temporale, linearità della carica, …)

Obiettivo: distinguere le distribuzioni in energia in **blu/rosso**

Rivelatore centrale

Requisiti principali:

- Alta statistica di eventi
 → ampio volume fiduciale
- Risoluzione energetica ≤ 3% a 1 MeV
 - → copertura del sistema dei fotomoltiplicatori > 75%
- Minimizzazione e controllo dei fondi

Sistema di fotomoltiplicatori (PMT) del CD: 17612 (*Large-*)PMT da 20 pollici 25600 (*Small-*)PMT da 3 pollici

Rivelatore centrale

Struttura portante in acciaio

- Funzione di supporto per pannelli di acrilico, scintillatore, fotomoltiplicatori, elettronica di front-end, ecc.,..
- 40.1 m di diametro
- Precisione di assemblaggio < 3 mm</p>
- Materiale a bassa contaminazione

Struttura in acrilico

- Diametro interno (35.40 ± 0.04) m
- Spessore (124 ± 4) mm
- Trasparenza al di sopra del 96%
- Radiopurezza: U/Th/K < 1 ppt</p>

Assemblaggio iniziato a luglio 2022, in corso

Assemblaggio

terminato a

giugno 2022

Scintillatore liquido

Linear Alkyl Benzene (LAB) + 2.5 g/L PPO + 3 mg/L bis-MSB

NIM A 988(2021)164823

- Resa di luce complessiva (*light yield*) > 1300 fotoelettroni / MeV
- Lunghezza di attenuazione > 20 m
- Alta radiopurezza

Requisiti di radiopurezza

	²³⁸ U / ²³² Th	⁴⁰ K	²¹⁰ Pb
ν da reattore	< 10 ⁻¹⁵ g/g	< 10 ⁻¹⁶ g/g	< 10 ⁻²² g/g
ν solari	< 10 ⁻¹⁷ g/g	< 10 ⁻¹⁸ g/g	< 10 ⁻²⁴ g/g
			JHEP11(2021)102

- Diverse strategie di purificazione
- Sistema di rivelazione (OSIRIS) ad hoc per monitorare la radiopurezza durante le fasi di riempimento del rivelatore
 Online Scintillator Internal Radioactivity Investigation System

Eur. Phys. J. C 82, 1168 (2022)

Sistema di fotomoltiplicatori

Sistema sinergico di fotomoltiplicatori da 3 e 20 pollici \rightarrow risoluzione energetica e linearità della carica

- PMT da 3 e 20 pollici: tutti i PMT sono stati prodotti, testati, e sigillati (*potted*). Installazione in corso
- Installazione dell'elettronica in corso

Studi di fisica in JUNO

Primi studi di sensitività: *Neutrino Physics with JUNO*, <u>2016 J. Phys. G: Nucl. Part. Phys. 43 030401</u> Studi aggiornati: *JUNO Physics and Detectors*, <u>Prog. Part. Nucl. Phys. 123 (2022) 103927</u>

 $\overline{\nu}_e$ da reattore

v atmosferici

 ν solari

 ν da supernovae

geoneutrini

╋

Sorgente	Segnale atteso		Rar	nge d	i ene	rgia		
Reattore	~ 60 / giorno		I					_
Esplosione di supernova	~ 7300 a 10 kpc in pochi s							
Diffuse Supernova Background	~ 2-4 / anno							
Solari (da ⁸ B)	O(100) / giorno							
Atmosferici	~ O(100) /anno							
Geoneutrini	~ 400 / anno				 			
		0.1	1	10	10 ²	10 ³	104	Me

Studi di nuova fisica:

- Neutrini sterili
- Interazioni non-standard
- Invarianza di Lorentz
- Decadimento del protone

• ...

Studi di fisica in JUNO

Primi studi di sensitività: *Neutrino Physics with JUNO*, <u>2016 J. Phys. G: Nucl. Part. Phys. 43 030401</u> Studi aggiornati: *JUNO Physics and Detectors*, <u>Prog. Part. Nucl. Phys. 123 (2022) 103927</u>

Poster di Claudio Lombardo:
 Rivelazione dei neutrini da esplosioni stellari in JUNO

 ν atmosferici

 ν solari

 ν da supernovae

geoneutrini

╋

Sorgente	Segnale atteso	Range di energia				
Reattore	~ 60 / giorno					
Esplosione di supernova	~ 7300 a 10 kpc in pochi s					
Diffuse Supernova Background	~ 2-4 / anno					
Solari (da ⁸ B)	O(100) / giorno					
Atmosferici	~ O(100) /anno					
Geoneutrini	~ 400 / anno					
		0.1 1 10 10^2 10^3 10^4				

Studi di nuova fisica:

- Neutrini sterili
- Interazioni non-standard
- Invarianza di Lorentz
- Decadimento del protone

• ...

$\overline{\nu}_e$ da reattore: decadimento beta inverso

- Sorgente del segnale: 26.6 GW_{th} da 2 centrali nucleari
- Rivelazione tramite decadimento beta inverso (IBD) $\overline{\nu}_e + p \rightarrow e^+ + n$
 - Segnale prompt: positrone
 - Segnale delayed: n-H (2.22 MeV, $\tau \sim$ 200 $\mu s)$ o n-12C

$\overline{\nu}_e$ da reattore: decadimento beta inverso

 Sorgente del segnale: 26.6 GW_{th} da 2 centrali nucleari

- Rivelazione tramite decadimento beta inverso (IBD) $\overline{\nu}_e + p \rightarrow e^+ + n$
 - Segnale prompt: positrone
 - Segnale delayed: n-H (2.22 MeV, $\tau \sim$ 200 $\mu s)$ o n-12C
- Coincidenza prompt-delayed: segnatura per distinguere interazioni di IBD dagli eventi di fondo
- Selezione basata sulla topologia spaziale e temporale degli eventi

Rate del segnale attesa: 47.1 IBD/ giorno

Rate del background attesa: 4.11 / giorno

Chinese Phys. C 46 123001 (2022)

$\overline{\nu}_e$ da reattore: ordinamento di massa

- Sensibilità attesa per la determinazione dell'ordinamento di massa: 3σ in ~ 6 anni con 26.6 GW_{th}
- Possibilità di studio combinato con la rivelazione di neutrini atmosferici
- Articolo in preparazione <u>zenodo.6775075</u>

$$\Delta \chi^2_{\rm MO} = |\chi^2_{\rm min}(\rm NO) - \chi^2_{\rm min}(\rm IO)|$$

$\overline{\nu}_e$ da reattore: parametri di oscillazione

$$P\left(\bar{\nu}_{e} \to \bar{\nu}_{e}\right) = 1 - \sin^{2} 2\theta_{13} \left(\sin^{2} \theta_{12} \sin^{2} \frac{\Delta m_{32}^{2}}{4} \frac{L}{E} + \cos^{2} \theta_{12} \sin^{2} \frac{\Delta m_{31}^{2}}{4} \frac{L}{E}\right) - \sin^{2} 2\theta_{12} \cos^{4} \theta_{13} \sin^{2} \frac{\Delta m_{21}^{2}}{4} \frac{L}{E}$$

	Δm^2_{31}	Δm^2_{21}	$\sin^2 \theta_{12}$	$\sin^2\theta_{13}$
PDG 2020	1.4%	2.4%	4.2%	3.2%
100 days	~0.8%	~1.0%	~1.9%	~47.9%
6 years	~0.2%	~0.3%	~0.5%	~12%

- Precisione < 1% su $\Delta m^2{}_{21}$, e $\Delta m^2{}_{31}$ in 100 giorni
- Precisione < 1% su sin²(2θ₁₂) in 1 anno

Misura di sin²($2\theta_{12}$) e Δm^2_{21} anche con neutrini solari (prossima slide) Chinese Phys. C 46 123001 (2022)

Neutrini solari (E_{vis} > 2 MeV)

- Rivelazione tramite scattering elastico ve⁻
- Neutrini solari dal ⁸B

е

Neutrini solari (E_{vis} > 2 MeV)

- Rivelazione tramite scattering elastico ve⁻
- Neutrini solari dal ⁸B
- Misura dei parametri di oscillazione sin²($2\theta_{12}$) e Δm_{21}^2
- Precisione attesa in 10 anni:
 - Flusso di neutrini da ⁸B: 5 %
 - $\sin^2(2\theta_{12})$: +9% / -8%
 - Δm²₂₁: +27% / -17%

ES + CC + NC <u>arXiv:2210.08437</u> (sottomesso a APJ) Solo ES <u>Chin.Phys.C 45(2021)023004</u>

BACKUP

JUNO: caratteristiche principali

Esperimento	Daya Bay	Borexino	KamLAND	JUNO
Volume attivo	20 ton	~ 300 ton	~ 1kton	20 kton
Copertura	~ 12 %	~ 34 %	~ 34 %	~ 78 %
Risoluzione σ_E	$\sim 8 \%/\sqrt{E}$	$\sim 5 \%/\sqrt{E}$	$\sim 6 \% / \sqrt{E}$	~ 3 %/√E
Light yield	~ 160 PE/MeV	~ 500 PE/MeV	~ 250 PE/MeV	> 1300 PE/MeV

- Ingente volume fiduciale
- Basso livello di contaminazione:
 - Laboratorio sotterraneo a circa 600 m di profondità, schermato dalla roccia sovrastante (≈ 1800 m.w.e.)
 - Screening e scelta dei materiali per minimizzare la contaminazione radioattiva
 - Attenta procedura di installazione

- Alta risoluzione energetica:
 - Resa di luce dello scintillatore $\approx 10^4$ fotoni/MeV
 - Copertura dei PMT $\approx 78\%$
 - Alta trasparenza dello scintillatore
 - Programma di calibrazione dedicato

Sistema di calibrazione

JHEP 03(2021)004

- 4 sistemi di calibrazione
- Programma di calibrazioni settimanali e mensili
- Non-linearità dello scintillatore:
 - 5 sorgenti gamma
 - 2 sorgenti di neutroni
 - Spettro del ¹²B
- Non-linearità strumentale:
 - Sorgente laser UV

Dual Calorimetry Calibration

- PMT da 3 pollici come riferimento per la scala lineare
- Risposta dei PMT da 20 pollici è corretta per singolo canale
- Non-linearità residua < 0.3 %

$\overline{\nu}_e$ da reattore: segnale e background

- Alcune sorgenti di fondo:
 - Accidentali, ⁹Li-⁸He cosmogenici, geoneutrini, ...
- Principali criteri di selezione:
 - Volume fiduciale r < 17.2 m
 - Energia eventi prompt $E_p \in (0.7, 12)$
 - Energia eventi *delayed* $E_d \in (1.9, 2.5) \cup (4.4, 5.5)$
 - Correlazione temporale $\Delta t < 1$ ms
 - Correlazione spaziale $\Delta r < 1.5$ m
 - Veto dei muoni

Rate del segnale attesa: 47.1 IBD/ giorno

Rate del background attesa: 4.11 / giorno

Chinese Phys. C 46 123001 (2022)

Neutrini solari (E_{vis} < 2 MeV)

Ideal

- Neutrini solari da ⁷Be, pep, CNO
- Diversi scenari di radiopurezza:

IBD

Baseline

BX-like

Neutrini atmosferici

- Prima misura in scintillatore liquido: studi nel range 100 MeV – 10 GeV
- Analisi basata solo su eventi CC fully contained:
 - Distinzione tra neutrini muonici ed elettronici possibile tramite l'hit time
 - Ricostruzione dello spettro di ν_e e ν_μ con una precisione tra il 10% e il 25% in 5 anni
- Possibilità di analisi combinata per la sensitività all'ordinamento di massa
- Misura del parametro θ_{23}

EPJC (2021) 81:887

JUNO-TAO

Taishan Antineutrino Observatory

arXiv: 2005.08745

- 2.8-ton Gd-LS in sfera di acrilico
- 10 m² SiPM
 - Copertura del ~94%
 - 50% PDE
- 4500 PE/MeV
- Risoluzione energetica < 2% @ 1 MeV
- 30 m dalla centrale di Taishan
 - 30x rate attesa in JUNO

Obiettivo principale: fornire uno spettro di riferimento per JUNO

