Normal Forms for non linear betatronic motion

Diego Quatraro

Bologna University, INFN Bologna
\&
CERN
June 2, 2008

Many thanks to Prof. G. Turchetti \& Dr. M. Giovannozzi

(1) Non linear charged particles motion

(2) Normal Forms

(3) Main application to betatronic motion

The equation of motion

4-D phase space: $\mathbf{x}=\left(x, p_{x}, y, p_{y}\right)$. The Hamiltonian function

$$
\mathcal{H}(\mathbf{x} ; s)=\underbrace{\frac{p_{x}^{2}+p_{y}^{2}}{2}+\left(\frac{1}{\rho(s)^{2}}-k_{1}(s)\right) \frac{x^{2}}{2}+k_{1}(s) \frac{y^{2}}{2}}_{\text {Linear Motion }}
$$

The equation of motion

4-D phase space: $\mathbf{x}=\left(x, p_{x}, y, p_{y}\right)$. The Hamiltonian function

$$
\begin{aligned}
& \mathcal{H}(\mathbf{x} ; s)=\underbrace{\frac{p_{x}{ }^{2}+p_{y}{ }^{2}}{2}+\left(\frac{1}{\rho(s)^{2}}-k_{1}(s)\right) \frac{x^{2}}{2}+k_{1}(s) \frac{y^{2}}{2}}_{\text {Linear Motion }} \\
& -\mathbb{R} \boldsymbol{e}\left[\sum_{n=2}^{M} \frac{k_{n}(s)+i j_{n}(s)}{(n+1)!}(x+i y)^{n+1}\right]
\end{aligned}
$$

The equation of motion

4-D phase space: $\mathbf{x}=\left(x, p_{x}, y, p_{y}\right)$. The Hamiltonian function

$$
\begin{aligned}
& \mathcal{H}(\mathbf{x} ; s)=\underbrace{\frac{p_{x}{ }^{2}+p_{y}{ }^{2}}{2}+\left(\frac{1}{\rho(s)^{2}}-k_{1}(s)\right) \frac{x^{2}}{2}+k_{1}(s) \frac{y^{2}}{2}}_{\text {Linear Motion }} \\
& \underbrace{-\mathbb{R} \boldsymbol{e}\left[\sum_{n=2}^{M} \frac{k_{n}(s)+i j_{n}(s)}{(n+1)!}(x+i y)^{n+1}\right]}
\end{aligned}
$$

Non Linear Motion
Such a one as system is non integrable, but some approximate integrals still exist.

The equation of motion

4-D phase space: $\mathbf{x}=\left(x, p_{x}, y, p_{y}\right)$. The Hamiltonian function

$$
\mathcal{H}(\mathbf{x} ; s)=\underbrace{\frac{p_{x}{ }^{2}+p_{y}{ }^{2}}{2}+\left(\frac{1}{\rho(s)^{2}}-k_{1}(s)\right) \frac{x^{2}}{2}+k_{1}(s) \frac{y^{2}}{2}}
$$

$$
\underbrace{-\mathbb{R} e\left[\sum_{n=2}^{M} \frac{k_{n}(s)+i j_{n}(s)}{(n+1)!}(x+i y)^{n+1}\right]}
$$

Non Linear Motion
Such a one as system is non integrable, but some approximate integrals still exist. E. g. Henón-Heiles problem and its Poincarè section

Non linear maps

One turn map of a linear lattice with a sextupolar kick reads

Non linear maps

One turn map of a linear lattice with a sextupolar kick reads

$$
\left(\begin{array}{c}
x^{\prime} \tag{2}\\
p_{x}^{\prime} \\
y^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\mathbf{L}\left(\begin{array}{c}
x \\
p_{x}+\frac{K_{2}}{2}\left(x^{2}-y^{2}\right) \\
y \\
p_{y}-K_{2} x y
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
\mathbf{L}=\text { linear transfer matrix } \\
K_{2}=\text { integrated gradient }
\end{array}\right.
$$

Non linear maps

One turn map of a linear lattice with a sextupolar kick reads

$$
\left(\begin{array}{c}
x^{\prime} \tag{2}\\
p_{x}^{\prime} \\
y^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\mathbf{L}\left(\begin{array}{c}
x \\
p_{x}+\frac{K_{2}}{2}\left(x^{2}-y^{2}\right) \\
y \\
p_{y}-K_{2} x y
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
\mathbf{L}=\text { linear transfer matrix } \\
K_{2}=\text { integrated gradient }
\end{array}\right.
$$

In Courant-Snyder coordinate $\hat{\mathbf{x}}=\mathbb{T} \mathbf{x}$

Non linear maps

One turn map of a linear lattice with a sextupolar kick reads

$$
\left(\begin{array}{c}
x^{\prime} \tag{2}\\
p_{x}^{\prime} \\
y^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\mathbf{L}\left(\begin{array}{c}
x \\
p_{x}+\frac{K_{2}}{2}\left(x^{2}-y^{2}\right) \\
y \\
p_{y}-K_{2} x y
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
\mathbf{L}=\text { linear transfer matrix } \\
K_{2}=\text { integrated gradient }
\end{array}\right.
$$

In Courant-Snyder coordinate $\hat{\mathbf{x}}=\mathbb{T} \mathbf{x}$

$$
\mathbb{T}=\left(\begin{array}{cccc}
\frac{\sqrt{\beta_{x}}}{\frac{-\alpha_{x}}{\sqrt{\beta_{x}}}} & \frac{0}{\sqrt{\beta_{x}}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{-\alpha}{\sqrt{\beta_{y}}} & 0 \\
\sqrt{\beta_{y}} & \frac{1}{\sqrt{\beta_{y}}}
\end{array}\right)
$$

Non linear maps

One turn map of a linear lattice with a sextupolar kick reads

$$
\left(\begin{array}{c}
x^{\prime} \tag{2}\\
p_{x}^{\prime} \\
y^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\mathbf{L}\left(\begin{array}{c}
x \\
p_{x}+\frac{K_{2}}{2}\left(x^{2}-y^{2}\right) \\
y \\
p_{y}-K_{2} x y
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
\mathbf{L}=\text { linear transfer matrix } \\
K_{2}=\text { integrated gradient }
\end{array}\right.
$$

In Courant-Snyder coordinate $\hat{\mathbf{x}}=\mathbb{T} \mathbf{x}$

$$
\mathbb{T}=\left(\begin{array}{cccc}
\frac{\sqrt{\beta_{x}}}{\sqrt{\beta_{x}}} & 0 & 0 & 0 \\
\sqrt{\beta_{x}} & \frac{1}{\sqrt{\beta_{x}}} & 0 & 0 \\
0 & 0 & \frac{-\sqrt{\beta_{y}}}{\sqrt{\beta_{y}}} & \frac{1}{\sqrt{\beta_{y}}}
\end{array}\right)
$$

Non linear maps

One turn map of a linear lattice with a sextupolar kick reads

$$
\left(\begin{array}{c}
x^{\prime} \tag{2}\\
p_{x}^{\prime} \\
y^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\mathbf{L}\left(\begin{array}{c}
x \\
p_{x}+\frac{K_{2}}{2}\left(x^{2}-y^{2}\right) \\
y \\
p_{y}-K_{2} x y
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
\mathbf{L}=\text { linear transfer matrix } \\
K_{2}=\text { integrated gradient }
\end{array}\right.
$$

In Courant-Snyder coordinate $\hat{\mathbf{x}}=\mathbb{T} \mathbf{x}$

$$
\mathbb{T}=\left(\begin{array}{cccc}
\frac{\sqrt{\beta_{x}}}{\sqrt{\beta_{x}}} & 0 & 0 & 0 \\
\sqrt{\beta_{x}} & \frac{1}{\sqrt{\beta_{x}}} & 0 & 0 \\
0 & 0 & \frac{-\sqrt{\beta_{y}}}{\sqrt{\beta_{y}}} & \frac{1}{\sqrt{\beta_{y}}}
\end{array}\right)
$$

ellipse becomes a circle

Non linear maps

One turn map of a linear lattice with a sextupolar kick reads

$$
\left(\begin{array}{c}
x^{\prime} \tag{2}\\
p_{x}^{\prime} \\
y^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\mathbf{L}\left(\begin{array}{c}
x \\
p_{x}+\frac{K_{2}}{2}\left(x^{2}-y^{2}\right) \\
y \\
p_{y}-K_{2} x y
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
\mathbf{L}=\text { linear transfer matrix } \\
K_{2}=\text { integrated gradient }
\end{array}\right.
$$

In Courant-Snyder coordinate $\hat{\mathbf{x}}=\mathbb{T} \mathbf{x}$

$$
\mathbb{T}=\left(\begin{array}{cccc}
\frac{\sqrt{\beta_{x}}}{\frac{-\alpha x}{\sqrt{\beta_{x}}}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{-\alpha_{y}}{\sqrt{\beta_{y}}} & 0 \\
0 & \frac{1}{\sqrt{\beta_{y}}}
\end{array}\right)
$$

ellipse becomes a circle and the non-linear one turn map reads

$$
\left(\begin{array}{c}
\hat{x}^{\prime} \\
\hat{p}_{x}^{\prime} \\
\hat{y}^{\prime} \\
\hat{p}_{y}^{\prime}
\end{array}\right)=\mathbf{R}(\omega)\left(\begin{array}{c}
\hat{x} \\
\hat{p}_{x}+\frac{K_{2}}{2} \beta_{x}^{3 / 2}\left(\hat{x}^{2}-\beta \hat{y}^{2}\right) \\
\hat{y} \\
\hat{p}_{y}-K_{2} \beta_{x}^{3 / 2} \beta \hat{x} \hat{y}
\end{array}\right)
$$

Non linear maps

One turn map of a linear lattice with a sextupolar kick reads

$$
\left(\begin{array}{c}
x^{\prime} \tag{2}\\
p_{x}^{\prime} \\
y^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\mathbf{L}\left(\begin{array}{c}
x \\
p_{x}+\frac{K_{2}}{2}\left(x^{2}-y^{2}\right) \\
y \\
p_{y}-K_{2} x y
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
\mathbf{L}=\text { linear transfer matrix } \\
K_{2}=\text { integrated gradient }
\end{array}\right.
$$

In Courant-Snyder coordinate $\hat{\mathbf{x}}=\mathbb{T} \mathbf{x}$

$$
\mathbb{T}=\left(\begin{array}{cccc}
\frac{\sqrt{\beta_{x}}}{\frac{-\alpha x}{\sqrt{\beta_{x}}}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{-\alpha_{y}}{\sqrt{\beta_{y}}} & 0 \\
0 & \frac{1}{\sqrt{\beta_{y}}}
\end{array}\right)
$$

ellipse becomes a circle and the non-linear one turn map reads

$$
\left(\begin{array}{c}
\hat{x}^{\prime} \tag{3}\\
\hat{p}_{x}^{\prime} \\
\hat{y}^{\prime} \\
\hat{p}_{y}^{\prime}
\end{array}\right)=\mathbf{R}(\omega)\left(\begin{array}{c}
\hat{x} \\
\hat{p}_{x}+\frac{K_{2}}{2} \beta_{x}^{3 / 2}\left(\hat{x}^{2}-\beta \hat{y}^{2}\right) \\
\hat{y} \\
\hat{p}_{y}-K_{2} \beta_{x}^{3 / 2} \beta \hat{x} \hat{y}
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
\omega=\left(\omega_{x}, \omega_{y}\right) \text { linear tunes } \\
\mathbf{R}=\text { rotation matrix } \\
\beta=\beta_{y} / \beta_{x}
\end{array}\right.
$$

(1) Non linear charged particles motion

(2) Normal Forms

(3) Main application to betatronic motion

The theory $1 / 2$...the construction...

C-S theory extension.

The theory $1 / 2$...the construction...

C-S theory extension. In complex coordinate $z_{1}=\hat{x}-i \hat{p}_{x}, z_{2}=\hat{y}-i \hat{p}_{y}$ and $\mathbf{z}=\left(z_{1}, z_{2}\right)$ after $\mathbf{z} \rightarrow \beta_{x}^{3 / 2} / 2 K_{2} \mathbf{z}$ Eq. (3) reads

$$
\mathbf{z}^{\prime}=\mathbf{F}\left(\mathbf{z}_{1}, \mathbf{z}_{1}^{*}, \mathbf{z}_{2}, \mathbf{z}_{2}^{*}\right) \Rightarrow\left\{\begin{array}{l}
z_{1}^{\prime}=e^{i \omega_{1}}\left(z_{1}-\frac{i}{4}\left[\left(z_{1}+z_{1}^{*}\right)^{2}-\beta\left(z_{2}+z_{2}^{*}\right)^{2}\right]\right) \tag{4}\\
z_{2}^{\prime}=e^{i \omega_{2}}\left(z_{2}+\frac{i}{2} \beta\left(z_{1}+z_{1}^{*}\right)\left(z_{2}+z_{2}^{*}\right)\right)
\end{array}\right.
$$

The theory $1 / 2$...the construction...

C-S theory extension. In complex coordinate $z_{1}=\hat{x}-i \hat{p}_{x}, z_{2}=\hat{y}-i \hat{p}_{y}$ and $\mathbf{z}=\left(z_{1}, z_{2}\right)$ after $\mathbf{z} \rightarrow \beta_{x}^{3 / 2} / 2 K_{2} \mathbf{z}$ Eq. (3) reads

$$
\mathbf{z}^{\prime}=\mathbf{F}\left(\mathbf{z}_{1}, \mathbf{z}_{1}^{*}, \mathbf{z}_{2}, \mathbf{z}_{2}^{*}\right) \Rightarrow\left\{\begin{array}{l}
z_{1}^{\prime}=e^{i \omega_{1}}\left(z_{1}-\frac{i}{4}\left[\left(z_{1}+z_{1}^{*}\right)^{2}-\beta\left(z_{2}+z_{2}^{*}\right)^{2}\right]\right) \tag{4}\\
z_{2}^{\prime}=e^{i \omega_{2}}\left(z_{2}+\frac{i}{2} \beta\left(z_{1}+z_{1}^{*}\right)\left(z_{2}+z_{2}^{*}\right)\right)
\end{array}\right.
$$

Normal forms coordinate $\xi=\left(\xi_{1}, \xi_{1}^{*}, \xi_{2}, \xi_{2}^{*}\right)$ and NORMAL FORM $\mathbf{U}(\xi)$ such that $\Delta_{\alpha} \mathbf{U} \equiv \mathbf{U}\left(e^{i \alpha} \xi, e^{-i \alpha} \xi^{*}\right)-e^{i \alpha} \mathbf{U}\left(\xi, \xi^{*}\right)=0$

The theory $1 / 2$...the construction...

C-S theory extension. In complex coordinate $z_{1}=\hat{x}-i \hat{p}_{x}, z_{2}=\hat{y}-i \hat{p}_{y}$ and $\mathbf{z}=\left(z_{1}, z_{2}\right)$ after $\mathbf{z} \rightarrow \beta_{x}^{3 / 2} / 2 K_{2} \mathbf{z}$ Eq. (3) reads

$$
\mathbf{z}^{\prime}=\mathbf{F}\left(\mathbf{z}_{\mathbf{1}}, \mathbf{z}_{1}^{*}, \mathbf{z}_{\mathbf{2}}, \mathbf{z}_{2}^{*}\right) \Rightarrow\left\{\begin{array}{l}
z_{1}^{\prime}=e^{i \omega_{1}}\left(z_{1}-\frac{i}{4}\left[\left(z_{1}+z_{1}^{*}\right)^{2}-\beta\left(z_{2}+z_{2}^{*}\right)^{2}\right]\right) \tag{4}\\
z_{2}^{\prime}=e^{i \omega_{2}}\left(z_{2}+\frac{i}{2} \beta\left(z_{1}+z_{1}^{*}\right)\left(z_{2}+z_{2}^{*}\right)\right)
\end{array}\right.
$$

Normal forms coordinate $\xi=\left(\xi_{1}, \xi_{1}^{*}, \xi_{2}, \xi_{2}^{*}\right)$ and NORMAL FORM $\mathbf{U}(\xi)$ such that $\Delta_{\alpha} \mathbf{U} \equiv \mathbf{U}\left(e^{i \alpha} \xi, e^{-i \alpha} \xi^{*}\right)-e^{i \alpha} \mathbf{U}\left(\xi, \xi^{*}\right)=0$
A. Bazzani, G. Servizi, E. Todesco and G. Turchetti, CERN Yellow Report, 94-02, 1994.

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

$$
\left\{\begin{array}{l}
\xi_{1}^{\prime}=U_{1}=e^{i\left(\omega_{1}+\left[\Omega_{1}\left(\rho_{1}, \rho_{2}\right)\right]\right)} \xi_{1} \\
\xi_{2}^{\prime}=U_{2}=e^{i\left(\omega_{2}+\left[\Omega_{2}\left(\rho_{1}, \rho_{2}\right)\right]\right)} \xi_{2}
\end{array}\right.
$$

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

$$
\left\{\begin{array} { l }
{ \xi _ { 1 } ^ { \prime } = U _ { 1 } = e ^ { i (\omega _ { 1 } + [\Omega _ { 1 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 1 } } \tag{6}\\
{ \xi _ { 2 } ^ { \prime } = U _ { 2 } = e ^ { i (\omega _ { 2 } + [\Omega _ { 2 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\rho_{1}=\xi_{1} \xi_{1}^{*} \text { and } \rho_{2}=\xi_{2} \xi_{2}^{*} \\
\Omega_{k}\left(\rho_{1}, \rho_{2}\right)=\sum_{n=2}^{N} \sum_{j=0}^{n} \Omega_{k ; j, n-j} \rho_{1}^{j} \rho_{2}^{n-j}
\end{array}\right.\right.
$$

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

$$
\left\{\begin{array} { l }
{ \xi _ { 1 } ^ { \prime } = U _ { 1 } = e ^ { i (\omega _ { 1 } + [\Omega _ { 1 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 1 } } \tag{6}\\
{ \xi _ { 2 } ^ { \prime } = U _ { 2 } = e ^ { i (\omega _ { 2 } + [\Omega _ { 2 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\rho_{1}=\xi_{1} \xi_{1}^{*} \text { and } \rho_{2}=\xi_{2} \xi_{2}^{*} \\
\Omega_{k}\left(\rho_{1}, \rho_{2}\right)=\sum_{n=2}^{N} \sum_{j=0}^{n} \Omega_{k ; j, n-j} \rho_{1}^{j} \rho_{2}^{n-j}
\end{array}\right.\right.
$$

Integrable and symplectic map: ρ_{k} first integrals

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

$$
\left\{\begin{array} { l }
{ \xi _ { 1 } ^ { \prime } = U _ { 1 } = e ^ { i (\omega _ { 1 } + [\Omega _ { 1 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 1 } } \tag{6}\\
{ \xi _ { 2 } ^ { \prime } = U _ { 2 } = e ^ { i (\omega _ { 2 } + [\Omega _ { 2 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\rho_{1}=\xi_{1} \xi_{1}^{*} \text { and } \rho_{2}=\xi_{2} \xi_{2}^{*} \\
\Omega_{k}\left(\rho_{1}, \rho_{2}\right)=\sum_{n=2}^{N} \sum_{j=0}^{n} \Omega_{k ; j, n-j} \rho_{1}^{j} \rho_{2}^{n-j}
\end{array}\right.\right.
$$

Integrable and symplectic map: ρ_{k} first integrals \rightarrow generalization of C-S invariants

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

$$
\left\{\begin{array} { l }
{ \xi _ { 1 } ^ { \prime } = U _ { 1 } = e ^ { i (\omega _ { 1 } + [\Omega _ { 1 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 1 } } \tag{6}\\
{ \xi _ { 2 } ^ { \prime } = U _ { 2 } = e ^ { i (\omega _ { 2 } + [\Omega _ { 2 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\rho_{1}=\xi_{1} \xi_{1}^{*} \text { and } \rho_{2}=\xi_{2} \xi_{2}^{*} \\
\Omega_{k}\left(\rho_{1}, \rho_{2}\right)=\sum_{n=2}^{N} \sum_{j=0}^{n} \Omega_{k ; j, n-j} \rho_{1}^{j} \rho_{2}^{n-j}
\end{array}\right.\right.
$$

Integrable and symplectic map: ρ_{k} first integrals
\rightarrow generalization of C-S invariants \rightarrow amplitude dependent rotations

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

$$
\left\{\begin{array} { l }
{ \xi _ { 1 } ^ { \prime } = U _ { 1 } = e ^ { i (\omega _ { 1 } + [\Omega _ { 1 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 1 } } \tag{6}\\
{ \xi _ { 2 } ^ { \prime } = U _ { 2 } = e ^ { i (\omega _ { 2 } + [\Omega _ { 2 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\rho_{1}=\xi_{1} \xi_{1}^{*} \text { and } \rho_{2}=\xi_{2} \xi_{2}^{*} \\
\Omega_{k}\left(\rho_{1}, \rho_{2}\right)=\sum_{n=2}^{N} \sum_{j=0}^{n} \Omega_{k ; j, n-j} \rho_{1}^{j} \rho_{2}^{n-j}
\end{array}\right.\right.
$$

Integrable and symplectic map: ρ_{k} first integrals
\rightarrow generalization of C-S invariants \rightarrow amplitude dependent rotations Interpolating Hamiltonian

$$
i \Omega_{k}=\frac{\partial \hat{H}}{\partial \rho_{h}}
$$

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

$$
\left\{\begin{array} { l }
{ \xi _ { 1 } ^ { \prime } = U _ { 1 } = e ^ { i (\omega _ { 1 } + [\Omega _ { 1 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 1 } } \tag{6}\\
{ \xi _ { 2 } ^ { \prime } = U _ { 2 } = e ^ { i (\omega _ { 2 } + [\Omega _ { 2 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\rho_{1}=\xi_{1} \xi_{1}^{*} \text { and } \rho_{2}=\xi_{2} \xi_{2}^{*} \\
\Omega_{k}\left(\rho_{1}, \rho_{2}\right)=\sum_{n=2}^{N} \sum_{j=0}^{n} \Omega_{k ; j, n-j} \rho_{1}^{j} \rho_{2}^{n-j}
\end{array}\right.\right.
$$

Integrable and symplectic map: ρ_{k} first integrals
\rightarrow generalization of C-S invariants \rightarrow amplitude dependent rotations

Interpolating Hamiltonian

$$
\begin{align*}
i \Omega_{k}=\frac{\partial \hat{H}}{\partial \rho_{h}} \quad \hat{H} & =i \hat{h}\left(\rho_{1}, \rho_{2}\right)=i\left(\omega_{1} \rho_{1}+\omega_{2} \rho_{2}+\sum_{k_{1}+k_{2} \geq 2}^{[(N+1) / 2]} h_{k_{1}, k_{2}} \rho_{1}^{k_{1}} \rho_{2}^{k_{2}}\right) \tag{7}\\
\mathbf{U} & =\mathbf{L e} e^{D_{H}} \quad D_{H}^{n} \tag{8}
\end{align*}=\{\{\ldots\{\{\cdot, H\}, H\} \ldots\}, H\} .
$$

H is symmetric respect to $L \rightarrow H(L \xi)=H(\xi)$

The theory $2 / 2$.interpolating Hamiltonian

4D map with nonresonant linear frequencies the normal form map reads

$$
\left\{\begin{array} { l }
{ \xi _ { 1 } ^ { \prime } = U _ { 1 } = e ^ { i (\omega _ { 1 } + [\Omega _ { 1 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 1 } } \tag{6}\\
{ \xi _ { 2 } ^ { \prime } = U _ { 2 } = e ^ { i (\omega _ { 2 } + [\Omega _ { 2 } (\rho _ { 1 } , \rho _ { 2 })]) } \xi _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
\rho_{1}=\xi_{1} \xi_{1}^{*} \text { and } \rho_{2}=\xi_{2} \xi_{2}^{*} \\
\Omega_{k}\left(\rho_{1}, \rho_{2}\right)=\sum_{n=2}^{N} \sum_{j=0}^{n} \Omega_{k ; j, n-j} \rho_{1}^{j} \rho_{2}^{n-j}
\end{array}\right.\right.
$$

Integrable and symplectic map: ρ_{k} first integrals
\rightarrow generalization of C-S invariants \rightarrow amplitude dependent rotations

Interpolating Hamiltonian

$$
\begin{align*}
i \Omega_{k}=\frac{\partial \hat{H}}{\partial \rho_{h}} \quad \hat{H} & =i \hat{h}\left(\rho_{1}, \rho_{2}\right)=i\left(\omega_{1} \rho_{1}+\omega_{2} \rho_{2}+\sum_{k_{1}+k_{2} \geq 2}^{[(N+1) / 2]} h_{k_{1}, k_{2}} \rho_{1}^{k_{1}} \rho_{2}^{k_{2}}\right) \tag{7}\\
\mathbf{U} & =\mathbf{L} e^{D_{H}} \quad D_{H}^{n}
\end{align*}=\{\{\ldots\{\{\cdot, H\}, H\} \ldots\}, H\} .
$$

H is symmetric respect to $L \rightarrow H(L \xi)=H(\xi)$
Invariant with respect to $U \rightarrow H\left(U^{n}(\xi)\right)=H(\xi)$

4D resonances and Henón map 1/2

Being $\omega=\left(\omega_{1}, \omega_{2}, 2 \pi\right)$ and $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$ we distinguish three cases

4D resonances and Henón map 1/2

Being $\omega=\left(\omega_{1}, \omega_{2}, 2 \pi\right)$ and $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$ we distinguish three cases nonresonant CASE
$\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=0$
dense phase space orbits

4D resonances and Henón map 1/2

Being $\omega=\left(\omega_{1}, \omega_{2}, 2 \pi\right)$ and $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$ we distinguish three cases

NONRESONANT CASE
$\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=0$
dense phase space orbits SINGLE-RESONANCE CASE

$$
\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=l \mathbf{e}
$$

$$
I \in \mathbb{N}, \mathbf{e} \in \mathbb{N}^{3}
$$

4D resonances and Henón map 1/2

Being $\omega=\left(\omega_{1}, \omega_{2}, 2 \pi\right)$ and $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$ we distinguish three cases

NONRESONANT CASE

$\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=0$
dense phase space orbits

$$
\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=l \mathbf{e}
$$

$$
I \in \mathbb{N}, \mathbf{e} \in \mathbb{N}^{3}
$$

$$
l_{j} \in \mathbb{N}, \mathbf{e}_{j} \in \mathbb{N}^{3}
$$

4D resonances and Henón map 1/2

Being $\omega=\left(\omega_{1}, \omega_{2}, 2 \pi\right)$ and $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$ we distinguish three cases

NONRESONANT CASE

$\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=0$
dense phase space orbits

SINGLE-RESONANCE CASE

4D resonances and Henón map 1/2

Being $\omega=\left(\omega_{1}, \omega_{2}, 2 \pi\right)$ and $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$ we distinguish three cases

NONRESONANT CASE

$\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=0$
dense phase space orbits

SINGLE-RESONANCE CASE

$\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=\mathbf{l} \mathbf{e}$
$I \in \mathbb{N}, \mathbf{e} \in \mathbb{N}^{3}$
$\omega \cdot \mathbf{k}=0 \leftrightarrow \mathbf{k}=l_{1} \mathbf{e}_{1}+l_{2} \mathbf{e}_{2}$
$l_{j} \in \mathbb{N}, \mathbf{e}_{j} \in \mathbb{N}^{3}$

4D resonances and Henón map 2/2

If we care about non linear stuff...

4D resonances and Henón map 2/2

If we care about non linear stuff... $\Omega=\Omega(j)$

4D resonances and Henón map 2/2

If we care about non linear stuff... $\Omega=\Omega(j) \Rightarrow$ amplitude detuning We can write in the action space the resonance lines...

NONRESONANT TORI

4D resonances and Henón map 2/2

If we care about non linear stuff... $\Omega=\Omega(j) \Rightarrow$ amplitude detuning We can write in the action space the resonance lines...
0.2

4D resonances and Henón map 2/2

If we care about non linear stuff... $\Omega=\Omega(j) \Rightarrow$ amplitude detuning We can write in the action space the resonance lines...

NONRESONANT TORI

4D resonances and Henón map 2/2

If we care about non linear stuff... $\Omega=\Omega(j) \Rightarrow$ amplitude detuning We can write in the action space the resonance lines...

lowest order \rightarrow H quadratic in \vec{j}

$$
\left\{\begin{array}{l}
\Omega_{x}=\omega_{x}+2 \alpha_{20} j_{1}+\alpha_{11} j_{2} \tag{9}\\
\Omega_{y}=\omega_{y}+\alpha_{11} j_{2}+2 \alpha_{02} j_{2}
\end{array}\right.
$$

4D resonances and Henón map 2/2

If we care about non linear stuff... $\Omega=\Omega(j) \Rightarrow$ amplitude detuning We can write in the action space the resonance lines...

NONRESONANT TORI

$$
\left\{\begin{array}{l}
\Omega_{x}=\omega_{x}+2 \alpha_{20} j_{1}+\alpha_{11} j_{2} \tag{9}\\
\Omega_{y}=\omega_{y}+\alpha_{11} j_{2}+2 \alpha_{02} j_{2}
\end{array}\right.
$$

Resonance conditions as function of emittances $\rightarrow \epsilon_{i}=2 j_{i}$
Details: A. Bazzani, L. Bongini, G. Turchetti "Analysis of resonances in action space for symplectic maps" Phys. Rev. E 57, 1178

2D Henón map and Normal Forms application 1/3

x-plane sextupolar dynamics from Eq. (3) if we let $\beta \rightarrow 0$

2D Henón map and Normal Forms application 1/3

x-plane sextupolar dynamics from Eq. (3) if we let $\beta \rightarrow 0$

$$
\begin{equation*}
z^{\prime}=F\left(z, z^{*}\right)=e^{i \omega}(z-\underbrace{\frac{i}{4}\left(z+z^{*}\right)^{2}}_{\text {Nonlinear term }}) \tag{10}
\end{equation*}
$$

2D Henón map and Normal Forms application 1/3

x-plane sextupolar dynamics from Eq. (3) if we let $\beta \rightarrow 0$

$$
\begin{equation*}
z^{\prime}=F\left(z, z^{*}\right)=e^{i \omega}(z-\underbrace{\frac{i}{4}\left(z+z^{*}\right)^{2}}_{\text {Nonlinear term }}) \tag{10}
\end{equation*}
$$

2D Henón map and Normal Forms application 1/3

x-plane sextupolar dynamics from Eq. (3) if we let $\beta \rightarrow 0$

$$
\begin{equation*}
z^{\prime}=F\left(z, z^{*}\right)=e^{i \omega}(z-\underbrace{\frac{i}{4}\left(z+z^{*}\right)^{2}}_{\text {Nonlinear term }}) \tag{10}
\end{equation*}
$$

..phase portrait with $\nu=\omega / 2 \pi=0.212 \ldots$

2D Henón map and Normal Forms application $1 / 3$

x-plane sextupolar dynamics from Eq. (3) if we let $\beta \rightarrow 0$

$$
\begin{equation*}
z^{\prime}=F\left(z, z^{*}\right)=e^{i \omega}(z-\underbrace{\frac{i}{4}\left(z+z^{*}\right)^{2}}_{\text {Nonlinear term }}) \tag{10}
\end{equation*}
$$

..phase portrait with $\nu=\omega / 2 \pi=0.212 \ldots . .1 / 5$ resonance!

2D Henón map and Normal Forms application 2/3

Analytical nonlinear tune value...

2D Henón map and Normal Forms application $2 / 3$

Analytical nonlinear tune value... $\Omega=\omega+\Omega_{2} j+\mathcal{O}\left(j^{2}\right)$

2D Henón map and Normal Forms application $2 / 3$

Analytical nonlinear tune value $. . \Omega=\omega+\Omega_{2} j+\mathcal{O}\left(j^{2}\right)$ The Average Phase Advance $\nu^{\text {APA }}(z ; M)=\frac{1}{2 \pi M} \sum_{j=1}^{M}\left(\vartheta^{\circ j}-\vartheta^{\circ}(j-1)\right)$ gives us the nonlinear tune

2D Henón map and Normal Forms application $2 / 3$

Analytical nonlinear tune value $. . \Omega=\omega+\Omega_{2} j+\mathcal{O}\left(j^{2}\right)$ The Average Phase Advance $\nu^{\mathrm{APA}}(z ; M)=\frac{1}{2 \pi M} \sum_{j=1}^{M}\left(\vartheta^{\circ j}-\vartheta^{\circ(j-1)}\right)$ gives us the nonlinear tune

2D Henón map and Normal Forms application $2 / 3$

Analytical nonlinear tune value... $\Omega=\omega+\Omega_{2} j+\mathcal{O}\left(j^{2}\right)$ The Average Phase Advance $\nu^{\mathrm{APA}}(z ; M)=\frac{1}{2 \pi M} \sum_{j=1}^{M}\left(\vartheta^{\circ j}-\vartheta^{\circ}(j-1)\right)$ gives us the nonlinear tune

2D Henón map and Normal Forms application $2 / 3$

Analytical nonlinear tune value... $\Omega=\omega+\Omega_{2} j+\mathcal{O}\left(j^{2}\right)$ The Average Phase Advance $\nu^{\mathrm{APA}}(z ; M)=\frac{1}{2 \pi M} \sum_{j=1}^{M}\left(\vartheta^{\circ j}-\vartheta^{\circ(j-1)}\right)$ gives us the nonlinear tune

Good agreement between numerical and theoretical values!!!

2D Henón map and Normal Forms application 3/3

We can also build up the interpolating Hamiltonian to control the system stability

2D Henón map and Normal Forms application 3/3

We can also build up the interpolating Hamiltonian to control the system stability

2D Henón map and Normal Forms application 3/3

We can also build up the interpolating Hamiltonian to control the system stability

Map iteration (left) flow of $H\left(\xi, \xi^{*}\right)$ (right) ν being close to $1 / 4$ resonance

Dynamic aperture 1/2

Studies on slow extraction dynamic aperture... exciting the $1 / 3$ resonance

Dynamic aperture $1 / 2$

Studies on slow extraction dynamic aperture... exciting the $1 / 3$ resonance

Dynamic aperture $1 / 2$

Studies on slow extraction dynamic aperture... exciting the $1 / 3$ resonance

Dynamic aperture $1 / 2$

Studies on slow extraction dynamic aperture... exciting the $1 / 3$ resonance

Approaching the (unstable!) $\nu=1 / 3$ sextupolar resonance...the dynamic aperture is shrinking... particles get extracted. Studies on hyperbolic NF
L. Bongini, A. Bazzani, G. Turchetti, I. Hofmann Analysis of a model of resonant extraction of intense beams by normal forms and frequency map Phys. Rev. Special Topics - Accelerators and Beams 4, 114201 (2001)

Dynamic aperture $2 / 2$

Nekhoroshev like estimates on the time stability.

Dynamic aperture $2 / 2$

Nekhoroshev like estimates on the time stability. A particle in $\mathcal{B}(0 ; r / 2)$ remains bounded in $\mathcal{B}^{\prime}(0 ; r)$ for a time

$$
\begin{equation*}
\tau(r) \geq \tau_{0} \exp \left[\left(\frac{r^{*}}{r}\right)^{\frac{2}{1+\alpha}}\right] \quad \mathcal{D}(N)=\mathcal{D}_{\infty}\left(1+\frac{b}{\log ^{k} N}\right) \tag{11}
\end{equation*}
$$

A. Bazzani, S. Marmi, G. Turchetti, Nekhoroshev estimates for non resonant symplectic maps Celestial Mechanics 47, 333 (1990)

Numerical evidences of this scaling for the Hénon map and for a realistic 4-6D LHC model are given in
M. Giovannozzi, W. Scandale, E. Todesco Dynamic
aperture extrapolation in presence of tune
modulation, Phys. Rev. E 57, 3432 (1998)

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002)

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002) As the linear tune changes the particles get trapped in resonance islands

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002) As the linear tune changes the particles get trapped in resonance islands

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002) As the linear tune changes the particles get trapped in resonance islands

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002) As the linear tune changes the particles get trapped in resonance islands

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002) As the linear tune changes the particles get trapped in resonance islands

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002) As the linear tune changes the particles get trapped in resonance islands

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002) As the linear tune changes the particles get trapped in resonance islands

> @ CERN using NF theory and improving the number of particles in the islands...

Experimental data

Movie is a courtesy of A. Franchi

Multi Turn Extraction

Splitting the beam in phase space by means of nonlinear elements

Ref. http://ab-project-mte.web.cern.ch/AB-Project-MTE/ \& R. Cappi and M. Giovannozzi, Phys. Rev. Lett. 88, 104801 (2002) As the linear tune changes the particles get trapped in resonance islands

@ CERN using NF theory and improving the number of particles in the islands...

Experimental data

Movie is a courtesy of A. Franchi

Nonlinear parameters from NF analytical calculations!
D. Quatraro, Master Degree Thesis, Bologna University

- NF is an efficient tool to deal with nonlinear problems
- Analytical \& numerical methods to get informations concerning the stability and the dynamic aperture
- Several experiment @ CERN (MTE) agreed with NF theory
- Extensions also to space charge applications
C. Benedetti, G. Turchetti An analytic map for space charge in a nonlinear lattice Physics Letters A340, 461-465 (2006)
- MTE studies still ongoing @ CERN

