# Background Studies

# Eugenio Paoloni INFN Pisa, for the superb Background simulation group.

# Background team turn-over

|                   | he/she was                        | Now she/he is                                             |  |
|-------------------|-----------------------------------|-----------------------------------------------------------|--|
| Group coordinator | Giovanni Calderini                | Eugenio + Marica                                          |  |
| SVT               | Giovanni Calederini,<br>E.P. G.M. | Giovanni Marchiori<br>E. P.                               |  |
| DCH               | Aaron Roodman                     | Matteo Rama                                               |  |
| EMC               | Steve Playfer                     | Claudia Cecchi<br>Stefano Germani                         |  |
| IFR               | Gianluca Cavoto                   | Gianluigi Cibinetto<br>Marcello Rotondo<br>Mauro Munerato |  |
| SuperB/Touschek   | Manuela Boscolo                   | Manuela Boscolo                                           |  |

We have a brand new top notch team. PID will shortly be here too.

# Beam line modeling: Giovanni Marchiori



### Giovanni Geant 4 Model

• New "Siamese Twin" QD0 beam line simulated

• Tungsten shielding 3 cm thick (CDR: 6 to 18 cm)

### "Síamese Twin" QDO: Símona



- New conceptual design proposed to build a SC QD0 needed to implement Pantaleo (FF) and Mike (IR) design
- Field quality seems not a problem, field gradient needs some compromise: Mike, Simona, Panta etc. etc. working on it, promising news

## Detailed Detector Model





# What the group showed before this Meeting

|     | Radiative<br>Bhabha | Pairs<br>production                     | Touschek                                                                | Single beam<br>(non Toushek) |
|-----|---------------------|-----------------------------------------|-------------------------------------------------------------------------|------------------------------|
| SVT | Done                | "Done"<br>without Geant4<br>simulation* | "Done" with<br>limited statistic<br>LER only, beam<br>line unrealistic* | To do                        |
| DCH | Done                | To do                                   | To do                                                                   | To do                        |
| EMC | Done                | To do                                   | To do                                                                   | To do                        |
| IFR | Done                | To do                                   | To do                                                                   | To do                        |

## Presented at this Meeting (new IR & Det.)

|     | Radiative<br>Bhabha | Pairs<br>production                     | Touschek | Single beam<br>(non Toushek) |
|-----|---------------------|-----------------------------------------|----------|------------------------------|
| SVT | Done                | Work in progress<br>(unexpected result) | Done     | To do                        |
| DCH | Done                | Done                                    | Done     | To do                        |
| EMC | Done                | To do                                   | To do    | To do                        |
| IFR | Work in progress    | To do                                   | To do    | To do                        |

Caveat: limited statistic (1/10 of the CDR...), preliminary studies

## SVT: Giovanní Marchiori

### Rad. Bhabha

• With the current FF (stat. errors only, due to limited MC stat.):

| Layer | Rate e-                     | Rate e+                     |  |
|-------|-----------------------------|-----------------------------|--|
| 0     | 1.0±0.5 MHz/cm <sup>2</sup> | 1.5±0.6 MHz/cm <sup>2</sup> |  |
| 1     | negligible                  | negligible                  |  |
| 2     | negligible                  | negligible                  |  |
| 3     | negligible                  | negligible                  |  |
| 4     | negligible                  | negligible                  |  |
| 5     | negligible                  | negligible                  |  |

higher in L0, but tolerable
more stat. needed
investigate shielding close to L0

### Actual model we are using



• With CDR FF, expected rate in L0 was 23 MHz/cm<sup>2</sup>! With new FF and scrapers:

Manuela efforts to optimize HER Touschek preliminary but encouraging

| Layer | e- from LER                  | e+ from LER                  |
|-------|------------------------------|------------------------------|
| 0     | 12.8±1.4 kHz/cm <sup>2</sup> | 1.3±0.1 kHz/cm <sup>2</sup>  |
| 1     | 5±2 Hz/cm <sup>2</sup>       | 2.9±1.5 Hz/cm <sup>2</sup>   |
| 2     | 6±2 Hz/cm <sup>2</sup>       | 2.9±1.3 Hz/cm <sup>2</sup>   |
| 3     | 324±80 Hz/cm <sup>2</sup>    | 8.4±1.5 Hz/cm <sup>2</sup>   |
| 4     | 127±35 Hz/cm <sup>2</sup>    | 0.05±0.01 Hz/cm <sup>2</sup> |
| 5     | 19±5 Hz/cm <sup>2</sup>      | 5±1 Hz/cm <sup>2</sup>       |
|       |                              |                              |

#### preliminary

| e- f   | rom HER                 | e+ from HER                   |
|--------|-------------------------|-------------------------------|
| 537±1  | 7 kHz/cm <sup>2</sup>   | 170±10 kHz/cm <sup>2</sup>    |
| 50±3   | 3 kHz/cm <sup>2</sup>   | 20±2 kHz/cm <sup>2</sup>      |
| 16±1   | kHz/cm <sup>2</sup>     | 7.2±0.9 kHz/cm <sup>2</sup>   |
| 6.4±0  | .5 kHz/cm <sup>2</sup>  | 0.8±0.1 kHz/cm <sup>2</sup>   |
| 1.2±0  | .1 kHz/cm <sup>2</sup>  | 0.12±0.03 kHz/cm <sup>2</sup> |
| 0.56±0 | .06 kHz/cm <sup>2</sup> | ~0 Hz/cm <sup>2</sup>         |

- IR design very promising
- More work needed on this

bkg mainly due to electrons (positrons annihilate before hitting the SVT)

Recently simulated 700 events (~100ns) (interface to Diag36 by EP)

between O(100) and O(5) kHz/cm<sup>2</sup> in L1-5

 discrepancies between the expected rate and momentum distribution of incident particles in L0 currently not understood

# DCH: Matteo, Marcello, Giuseppe

- Three geometries implemented:
  - BaBar like, KLOE like, Conical hole KLOE like

### Radiative Bhabha's (I)

- $e^+e^- \rightarrow e^+e^-\gamma$
- 10 bunch crossings with  $E\gamma$ >10% Ebeam. Crossing freq=209MHz. ==>  $\Delta t$ ~50ns.
- e<sup>±</sup>: 3 hits. γ: 0 hits



Note: we can evaluate more precisely the average number of interacting photons from the number of entering photons and the cross section (as was done for the CDR)

Only upper limits from other sources... a factor x 100 in statistic needed



## EMC: Stefano, Claudía



Impact on EMC energy resolution
Results <u>without</u> tungsten shielding

 Statistic is too low with 3cm tungsten shielding: really good new

# IFR: Gígí, Marcello, Mauro

Small problems with the geometrical model, will be shortly solved

### Conclusions

- A first look at the background rootup exciting (few events and IFR not yet
- Main issues for the IFR:
  - Beam halo (mostly LER)
  - Innermost layers around the beam pipe
     Neutrons
- Can we simulate these contribution to the background?
   What would be the time scale?

### First look at background events

- First checks have been done analyzing the first radiative Bhabha rootuples produced by Eugenio.
- Some endcap volumes are overlapping with other stuff: only the barrel in the simulation.



IFRHits.pos.fy

Without the endcaps, only the very forward and backward part of the barrel have been hit

Elba - June 1, 2008

Small problems with the geometrical model, will be shortly solved

G. Cibinetto

## To Do list

- Produce bigger samples: backgrounds and single particles event to validate the simulation
- <u>Simulate neutrons</u>
- Validate the simulation against BaBar data

## Next steps: Fabrizio

- Goal is to deliver tools to support the detector design and optimization
  - Complementary role respect to fast simulation
  - Comes into play when fast simulation is not enough
- Improve geometry description
  - Different options for new sub-detectors
    - Use detailed simulation to inject realism into fast simulation
    - Estimate sub-detector response functions from detailed simulation and insert them into fast simulation
    - Generate Ghits with detailed simulation and feed fast simulation with them
      - Useful for background Ghits
    - Generate (simplified) digitization with detailed simulation and feed fast simulation with them

### Brain storming: Dave, Fabrizio, Mauro, Matteo....

- Derivation of fast simulation "Effective parameters" from the full simulation (svt radii, non active material, overlapping fraction... etc. etc.)
- EMC shower "catalogue" simulated with the full simulation and inserted in the fast one (more on next talk)
- Close interaction with GDML developers team
- Grid porting



- The background team bootstrapped
- Lot of work done by dedicated, and over-committed, people
- We have a very detailed description of the detector to begin to play with
- We have a to-do list, and some plan to extend the functionalities of the full simulation
- Join us!