

CDR, May 2007

- Established overall architecture, crab waist IR
- Overall set of machine parameters
- Lattices, based on ILC DR designs
- significant amount of beam-beam simulations
- Identification of major collective and intensity effects
- Identification of potentially suitable PEP-II components
- Tor Vergata site

Progress since CDR

- Crab Waist test results
- Optimized machine parameters
 - refined lattice, optimized for performance, smaller
 - reduced rf power requirements
- Refinement of IR design
 - defining magnet requirements, apertures & space, trajectories
 - dual-aperture QD0
- Beginning investigation of spin handling
- Refinement of injector requirements and design
- Initial look at feedback requirements & possible U. Wienands, SLAC-ASI architecture 3

SuperB WS, Elba 1-Jun-08

Progress Breakdown

Facility **Crab** Waist Accelerators IR **Polarization** Intensity **Feedbacks** Injector Wrap-Up

Crab Waist IR

P. Raimondi

Facility Crab Waist Accelerators IR Polarization Intensity Feedbacks Injector Wrap-Up

U. Wienands, SLA SuperB WS, Elba Large Piwinski angle $\Phi_{P=}\theta\sigma_z/\sigma_x$ Geometric luminosity gain Very low horizontal tune shift ² No parasitic collisions short overlap region small β_y^* ($\beta_y^* \sim \sigma_x$

/θ)

low vertical tune shift

Crab waist transformation (realized with two sextupoles $@\pi$ in x and 1.5 π in y from IP)

Geometric luminosity gain

Suppression of X-Y betatron and synchrobetatron resonances

9

SuperB New Parameters

M. Biagini		Nom	inal	Upg	jrade	Ultimate		
	PARAMETER	LER (e+)	HER (e-)	LER (e+)	HER (e-)	LER (e+)	HER (e-)	
	Energy (GeV)	4	7	4	7	4	7	
	Luminosity x 10 ³⁶	1.	.0	2	2.0	4.0		
	Circumference (m)	1800	1800					
	Revolution frequency (MHz)	0.1	67					
	Eff. long. polarization (%)	0	80					
Facility	RF frequency (MHz)	47	76					
raciiity	Momentum spread (x10 ⁻⁴)	7.9	5.6	9.0	8.0			
Trob Woist	Momentum compaction (x10 ⁻⁴)	3.2	3.8	3.2	3.8			
Jab walst	Rf Voltage (MV)	5	8.3	8	11.8	17.5	27	
Accoloratora	Energy loss/turn (MeV)	1.16	1.94	1.78	2.81			
Accelerators	Number of bunches	1251				2502		
ם	Particles per bunch (x10 ¹⁰⁾	5.	52			6.78		
ĸ	Beam current (A)	1.85				3.69		
Delemization	Beta y* (mm)	0.22	0.39	0.16	0.27			
Polarization	Beta x* (mm)	35	20					
into maiter	Emit y (pm-rad)	7	4	3.5	2	Deserve have		
mensity	Emit x (nm-rad)	2.8	1.6	1.4	0.8	Beam-bea	am 📘	
7	Sigma y* (microns)	0.039	0.039	0.0233	0.0233	transpare	ncy	
reedbacks	Sigma x* (microns)	9.9	5.66	7	4	4 conditions in		
	Bunch length (mm)			4	.3	· ·		
njector	Full Crossing angle (mrad)	48				rea		
Vera II.	Wigglers (#) 20 meters each	U 40/200	U 10/20	Z	Z -			
wrap-Op	Damping time (trans/long)(ms)	40/20	40/20	28/14	28/14			
	Luminosity lifetime (min)	20	./	ر 20	.30			
	Effective hear lifetime (min)	5.0	40	30	20			
	Interation sets and (v10 ¹¹) (100 ¹¹)	3.0	3.7	5.1	2.3	40	0.4	
	Tune objet u (from formula)	2.0	2.3 15	5.1	4.0	10	9.1	
J. Wienands, SLA	Tune shift y (from formula)	0.0042	10 0026	0.0050	.20			
Super R WS Flba	DE Dowor (MM)	0.0043	7	0.0009	0.0034	E0 3		
Superd WS, ElDa			<u>،</u>		20	<u> </u>		

P.Piminov, BINP

SuperB	<u>New IR Design</u>
M. Sullivan	• QD0 has two centers – one for each beam (septum OD0)
	 Bore has to be cold – no room for warm bore
Facility	 Means very low SR power on the walls
Crab Waist	– Minimal bending of incoming and outgoing beams
Accelerators IR	 – QDO centers are parallel to detector axis
Polarization	
Intensity	
Feedbacks	
Injector	
Wrap-Up	

U. Wienands, Novel QD0 design based on SC helical-type windings

SuperB WS, Elba 1-Jun-08

The winding shape

Starting from the principle of the AML *ideal* multipolar magnet optimize the winding shape to produce an ideal quadrupolar field centered on each of the beams

Two counter rotating windings to cancel out the inner solenoidal field and the outer field generated by the magnet centered on the close beam

Spin Rotator Summary

	Device Magnets			Solenoid Strength Dipole Strength S.R. Lengt					Ring length	Comment	
U. Wienands		Solenoids	Dipoles	Tm (ea.)	Tm (tot)	Tm (ea.)	Tm (tot)	(m, new)	(m, extra)		
vv ichands	Solenoid rotator	4	4	18.3	73.2	1.15	4.6	110	145	Geometry!	
	Solenoid rotator geom match	4	6	18.3	73.2	1.15	6.9	140	140		
	Solenoid w/ spin matching sole.	8	4	18.3	146.4	1.15	4.6	140	140	save 4.6 Tm	dipole
Facility	Dipole rotator	0	24	0	0	1.15	27.6	200	200	save 4.6 Tm	dipole
Crab Waist	7 Snakes	14	0	36.6	512.9	0	0	280	0		
Accelerators									NT		
IR									Not	ie:	
Polarization										ads not	
Intensity	Commonte									inerateu	
Feedbacks		19							No	optics	
Injector	– Dipole rotator has v-bends => emittance? matching considered										
Wrap-Up	– Solenoid rotator has plane twister => tuning, emittance?										
	– ??? 7 Snakes require $\sqrt{(7)} \approx 2.5$ times tuning effort ???										

Rf Power Requirement

	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER+
А.	5		S.	R. ener	gy		Total			Max				Total	Total	Total	Power for	LER
Novokhatski	Lumi	Beam	Beam	loss	Momen-	Momen-	RF	Bunch	Bunch	vol tage	Numbe	S.R.	ном	cavity	reflected	forward	one	Total
		energy	current	per turi	um com	tum	oltag	length	pacing	er cavit	of	power	power	loss	power	power	cavity	forward
		GeV	Α	Me V	paction	spread	MV	mm	nsec	MV	cavities	MW	MW	MW	MW	MW	MW	MW
	1E+36	7	1.3	3.3	3.0E-04	9.0E-04	18	4.7	4.2	0.7	26	4.29	0.2393	1.64	0.0022	6.17	0.24	13.32
Facility																		
Crab Waist	2E+36	7	2.17	4.1	3.0E-04	1.0E-03	18	5.2	2.1	0.7	26	8.897	0.2902	1.64	1.0105	11.84	0.46	27.02
Accelerators	3E+36	7	2.6	4.1	3.0E-04	1.0E-03	20	4.9	2.1	0.7	28	10.66	0.4613	1.88	1.4148	14.42	0.51	32.22
IR																		
Delevization																		HER+
Polarization	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER
Intensity			S.	R. ener	gy		Total		n 1	Max				Total	Total	Total	Power for	Supply
Feedbacks	Lumi	Beam	Beam	loss	Momen-	Momen-	RF	Bunch	Bunch	vol tage	Numbe	S.R.	ном	cavity	reflected	forward	one	Power
Teeubacks		energy	curre ni	per turi	um com	tum	voltag	length	pacing	er cavit	of	power	power	loss	power	power	cavity	eff.~50%
Injector		GeV	A	Me V	paction	spread	MV	mm	nsec	MV	cavities	MW	MW	MW	MW	MW	MW	MW
Wrap-Up	1E±26	4	2.28	1.0	1.9E-04	8 4E 04	0	2.0	4.2	0.6	14	4 2 2 2	0 7772	0.602	1 4276	7 15	0.51	26.64
	IL+30	4	2.20	1.9	1.0E-04	0.4E-04	0	3.0	4.2	0.0	14	4.334	0.1113	0.002	1,4370	7.15	0.51	20.04
	2F+36	4	3 05	2.3	1.8E-04	1.0E_03	16	3.2	2.1	0.6	26	0.085	1 700	1 296	2 0001	15.18	0.58	54.03
	215130	7	5.95	2.3	1.01-04	1.012-05	10	3.4	2.1	0.0	20	7.003	1.777	1.270	2.7771	15.10	0.50	54.05
U. Wienands, SL	3E+36	4	4.55	23	1.8E-04	1.0E-03	20	2.9	2.1	0.7	28	10.465	2.8578	1.88	2,5988	17.80	0.64	64.43
SuperB WS, Elbo	51,50	T	1.22	21.5	1.01-04	101-05	2 0	#17	2.1		20	10,105	210010	1.00	210700	17.00	0.04	01110

Ions in SuperBHER

SuperB	Ions in SuperKEKB L	ER (a long train)
H. Fukuma	Energy 3.5 GeV Bunch spacing : 2ns (=0.6m)	$\omega_{\beta} = 2.7210^7 \mathrm{sec}^{-1}$
	Number of bunch : 5120 Bunch current : 1.9 mA	$\omega_i = 1.23 10^{\circ} \text{sec}^{\circ}$ $\lambda_{ion} = 806 m^{-1} (\text{per bunch})$
Facility Crab Waist Accelerators	Pressure : 1 nTorr (CO) Emittance (H/V) : 24 nm/0.96 nm	$\phi_{ion} = \omega_i \cdot s_B / c = 0.246$ $\kappa = 8.53 10^{-9} m^{-3}$
IR Polarization	Beam size (H/V) : 0.6 mm/0.12 mm Beta function (H/V) : 15 m/15 m	$\alpha = \frac{\omega_i}{2Qc} = 0.0205$
Intensity Feedbacks Injector	Tune(V) : 43.545 Q : 10	$\underline{\tau_e} = 2\tau\ell\alpha = 2.3\mu s$
Wrap-Up	(revolution time : 10 µs)	less than one turn

SuperB		<u>Considering R&D feedback for low</u> <u>emittance accelerators</u>
A. Drago	۲	The R&D list for an upgrade starting from iGp -like system (in the software & gateware version running at the present at DAFNE) includes:
	1)	very low noise analog front end @ 3*RF
Facility	2)	maintain low cross-talk between adjacent bunches under 40 dB (better 60 dB)
Accelerators	3)	dual separated timing to pilot the backend power stage
IR	4)	digital block with higher dynamic range (12/16bits)
Polarization	5)	"dual gain" approach to minimize residual beam motion
Intensity	6)	integrated beam-feedback model
Feedbacks	"	
Injector		
Wrap-Up		

SuperB	List of Issues to Work(1/3)
M. Biagini	Spin rotator:
	\circ choose a scheme (since FF seems to be optimized,
	not good to insert spin rotator inside FF)
	 matching into ring lattice
	\circ repeat DA studies with s.r.
Facility	• is spin matching necessary?
Crab Waist	○ spin tracking code (Barber ?) → after
Accelerators	O
IR	Beam-beam simulations:
Polarization	• Perform full scan of tunes plane with checks on
Intensity	DA (Shatilov-Piminov codes)
Feedbacks	• Vertical tune shift
Injector	• Beam-beam tails \rightarrow emittance growth
Wron Up	• Codes?
wiap-Op	0

SuperB	List of Issues to Work(3/3)
M. Biagini	
Facility Crab Waist Accelerators IR Polarization Intensity Eeedbacks	 Beam dynamics & instabilities (in order of importance): E-cloud (simulation started) Fast ion IBS RF Space charge Multibunch CSR Touschek (preliminary work done, collimators and/or masks to be studied)
Injector Wrap-Up	Emittance tuning procedures

Facility

IR

Crab Waist

Accelerators

Polarization

Intensity

Injector

Wrap-Up

Feedbacks

Towards the Accelerator TDR

- Draft TOC
- 1st estimate of resources needed to complete TDR.
 - Not an unreasonable number compared to potentially available resources...
 - to be negotiated...
- We would like to settle the footprint in 6 mo., finish the TDR in 18 mo.

U. Wienands, SLA®-AS<mark>Help is welcome!</mark> SuperB WS, Elba 1-Jun-08

- ACCELERATOR TDR
- a. Introduction
- b. Parameters

Overview

- c. Crab waist (with ref to Dafne)
- d. Running scenario
- e. Tau running
- 2) Interaction region design
 - a. Geometry
 - b. FF design
 - c. IP magnets
 - d. SR fans & masking
 - e. Beam-gas
 - f. Radiative Bhabha
 - g. Luminosity monitor
 - h. Polarization measurement
 - i. Detector solenoid compensation scheme
 - j. Beam stay clear
 - k. Motion monitors
- 3) Collider design

40

- a. Overview
- b. LER design
 - i. Beam stay clear
 - ii. Coupling correction
 - iii. Dynamic aperture
- c. HER design
 - i. Spin rotator insertion
 - ii. Beam stay clear
 - iii. Coupling correction

It remains my privilege to thank INFN for hosting this most exciting workshop and to look forward to an intense and fruitful collaboration!

The End Beginning!