Update on SuperB Tau Physics

Alberto Lusiani INFN and Scuola Normale Superiore Pisa

VII SuperB Workshop Elba, May 31 – June 3, 2008

Sharpening the tau physics case at SuperB

Tau physics topics best addressed at SuperB

LFV Decays

- clean and unambiguous physics reach
- SuperB complementary to MEG
- LHC hardly provides competition
- SuperB significantly better than SuperKEKB
 - SuperB statistics and polarization help

CPV in tau decay

- SM prediction precise and clean
- most NP models don't predict it,

but can probe some specific models

- SuperB expected to be best facility
 - SuperB statistics polarization help

Tau *g*-2

- (g-2)_{μ} exp/th discrepancy exists
- precise SM and CMSSM predictions
- SuperB best facility
 - SuperB statistics and polarization help

Tau EDM

- severely constrained from electron EDM
- SuperB best facility
 - SuperB statistics and polarization help

Snowmass points and slopes

- benchmark points in the MSSM parameter space (B.C.Allanach *et al.*, hep-ph/0202233)
- mostly suitable for LHC searches
- for LFV one must make assumptions on some additional parameters

SPS	<i>M</i> _{1/2} (GeV)	<i>M</i> ₀ (GeV)	A ₀ (GeV)	tanβ	μ
1a	250	100	-100	10	> 0
1 b	400	200	0	30	> 0
2	300	1450	0	10	> 0
3	400	90	0	10	> 0
4	300	400	0	50	> 0
5	300	150	-1000	5	> 0

LFV searches on tau decays - outline

Theory

- SM predictions are clean: LFV tau decays hugely suppressed
- NP predictions evaluated on Snowmass points
- compared tau LFV searches vs. $\mu \rightarrow e\gamma$ LFV searches

Experiment

- SuperB at 75 ab⁻¹ experimental reach re-evaluated
 - extrapolate published results re-optimizized for SuperB at 75 ab⁻¹
- beam polarization effects investigated with simulations

physics reach of SuperB vs. other facilities assessed

LFV searches on tau decays - theory

LFV searches on tau decays - comparison with $\mu \rightarrow e\gamma$

LFV searches on tau decays - comparison with $\mu \rightarrow e\gamma$

LFV searches on tau decays - experiment

LFV searches on tau decays - electron beam polarization

80% electron beam polarization can serve to:

- determine the specific NP model that produces LFV (see hep-ph/9604296, Y.Kuno, Y.Okada, $\mu \rightarrow e\gamma$ Search with Polarized Muons)
- improve the signal to background discrimination

LFV searches on tau decays - SuperB vs. other facilities

		Snowmass points predictions			ns	Super <i>B</i>		
	1 a	1 b	2	3	4	5	90% UL	4σ disc.
$BF(au o \mu \gamma) imes 10^{-9}$	4.2	7.9	0.18	0.26	97	0.019	2	5
$BF(au o 3\mu) imes 10^{-12}$	9.4	18	0.41	0.59	220	0.043	200	880

Conclusions

- SuperB can resolve NP on a significant part of the parameter space
- Super*B* is complementary to $\mu \rightarrow e\gamma$ searches
- SuperKEKB worse by factor $\sqrt{5}$ for BF($\tau \rightarrow \mu\gamma$) and 5 for BF($\tau \rightarrow \mu\mu\mu$)
- SuperB LHC not expected to be competitive

NP theoretical predictions for tau g - 2

• SUSY is a viable explaination for existing th.-exp. discrepancy $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} \approx (3 \pm 1) \times 10^{-9}$ • SUSY contribution is larger for tau $\Delta a_{\tau} / \Delta a_{\mu} = m_{\tau}^2 / m_{\mu}^2 \approx 300$

	Sn	iowma	iss poi	ns	Super <i>B</i>		
	1 a	1 b	2	3	4	5	exp. resolution
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	wait a few slides

Experimental measurement of tau *g* – 2 at Super*B*

Experimental measurement of tau g - 2 at SuperB

Tau g - 2, comparison of SuperB with other facilities

	Sn	owma	ss poi	ns	Super <i>B</i>		
	1 a	1 b	2	3	4	5	exp. resolution
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1	
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3	1.0 – 2.4

SuperKEKB, without beam polarization, expected worse by factor \approx 10, and worse systematics

LHC not expected to be competitive

NP theoretical expectations for tau EDM

• in natural SUSY frameworks, lepton EDMs scale linearly with the lepton mass electron EDM upper limit ($d_e < 1.8 \cdot 10^{-27} e$ cm) constrains tau EDM outside of experiment reach

• no exp. sensitivity for most common NP scenarios given the electron limit

enhancements up to 10⁻²² e cm in multi-Higgs models

Experimental measurement of tau EDM

SuperB sensitivity estimated at $\approx [17 - 34] \cdot 10^{-20} e \text{ cm}$ not systematically limited

SuperB can much reduce tau EDM exp. uncertainty

although "natural" SUSY NP effects too small

T/CP-odd observables in tau decay

clean SM predictions

- *CP* asymmetry rate of $\tau^{\pm} \rightarrow K^{\pm} \pi^0 \nu$ estimated order of $\sim 10^{-12}$
- $\tau^{\pm} \rightarrow K_S \pi^{\pm} \nu$ rate asymmetry 3.3×10^{-3} with 2% relative precision
- most NP cannot generate observable CP-violating effects in τ decays

• effects with R-parity viol. SUSY or non-SUSY multi-Higgs up to the current UL from CLEO ($\sim 10^{-3}$)

• CLEO upper limit on charge-dependent angular rate asymmetry for $\tau \to K_S \pi^{\pm} \nu$ (13.3 fb⁻¹)

• extrapolating to SuperB at 75 fb⁻¹ \rightarrow reduce upper limit by factor \approx 75 to \approx 2.4 \cdot 10⁻⁵

• channel can rely on calibration provided by $\tau \rightarrow \pi \pi \pi \nu$ on the K_S sidebands

further improvements possible with beam polarization (not yet studied)

T/CP-odd observables in tau decay: comparison with other facilities

♦ SuperB more precise than SuperKEKB by factor √5, possibly more thanks to beam polarization
♦ no competition expected from LHC

Conclusions

- SuperB is significantly better than competing facilities
- there is high complementatiry with $\mu \rightarrow e\gamma$ searches
- beam polarization is useful

SuperB can probe whether SUSY is a viable explanation of the muon g - 2 discrepancy

- SuperB is significantly better than competing facilities
- beam polarization is an advantage

SuperB can test some specific NP models by measuring tau EDM and CPV in tau decay

- SuperB is significantly better than competing facilities
- beam polarization is an advantage

Thanks especially to

- Gino Isidori and Paride Paradisi (theory)
- Mike Roney and Swagato Banerjee (LFV experimental reach)

VII SuperB workshop – La Biodola, Elba – 31 May 2008