Short update from Valencia: Charm Physics

SuperB Meeting Elba, May 31-June 3, 2008

 $\begin{array}{c} {\rm Proceedings} \\ {\rm of} \\ {\rm Super} B \ {\rm Workshop} \ {\rm VI} \end{array}$

New Physics at the Super Flavor Factory

> Valencia, Spain January 7-15, 2008

Charm Physics

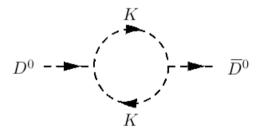
F. Martínez-Vidal IFIC – Universitat de València-CSIC

Charm physics: Mixing and CPV

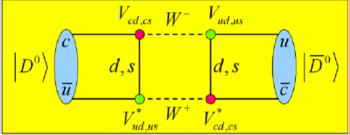
Prologue: New Physics Scenarios & Uniqueness of Charm

I. Bigi

- New Physics in general induces FCNC
 - their couplings could be substantially stronger for Up-type than for Down-type quarks (actually happens in some models which `brush the dirt of FCNC in the down-type sector under rug of the up-type sector)
- SM `background' much smaller for FCNC of Up-type quarks
 - cleaner -- albeit smaller -- signal!

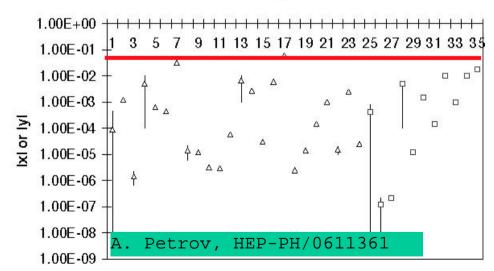


D^0 - \overline{D}^0 mixing, CPV, and the SM


• Short-distance contributions from mixing box diagrams in the Standard Model are

expected to be small:

- *b* quark is CKM-suppressed
- s and d quarks are GIM suppressed
- mainly contributes to the mass difference $x \approx O(10^{-5})$ or less
- Long-distance contributions dominate but hard to estimate precisely
 - expect $|y| \le 0.01$
 - $|x| \sim 0.1 1|y|$



• CP violation in mixing expected in SM at 10⁻⁵ [10⁻⁴] level in Cabibbo-allowed and single [doubly]-suppressed modes

$$x=rac{m_2-m_1}{\Gamma} \ y=rac{\Gamma_2-\Gamma_1}{2\Gamma}$$
 $\Gamma=rac{\Gamma_2+\Gamma_1}{2}$

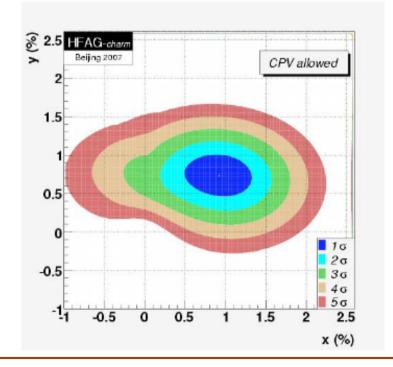
Standard Model mixing predictions

Reference Index

D^0 - \overline{D}^0 mixing

 ${\cal R}$, time-dependent decay rate

Wrong sign hadronic: $D^0 \rightarrow K^+ \pi$


$$\mathcal{R} = e^{-\Gamma t} \left\{ r_D + \sqrt{r_D} y' t + \frac{x'^2 + y'^2}{4} t^2 \right\}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

CP eigenstates: $D^0 \rightarrow h^+h^-$

$$\mathcal{R} \simeq e^{-\Gamma(1+y_{CP})t}$$
 $y_{CP} = y\cos\phi \simeq \frac{\tau_{K^-\pi^+}}{\tau_{h^+h^-}} - 1$
 $y_{CP} = (1.31 \pm 0.32 \pm 0.25)\%$

Wrong sign semileptonic: $D^0 \rightarrow K^+ l^- v$

$$\mathcal{R} = e^{-\Gamma t} \left\{ 1 + R_M t^2
ight\}, \quad R_M \equiv rac{x^2 + y^2}{2} \ R_M = (0.004^{+0.07}_{-0.06})\%$$

Dalitz technique $D^0 \rightarrow K_S h^+ h^-$

$$\mathcal{R} = e^{-\Gamma(1+y)t} |A_1|^2 + e^{-\Gamma(1-y)t} |A_2|^2 + 2e^{-\Gamma t} (\cos(\Gamma xt)\Re(A_1 A_2^*) + \sin(\Gamma xt)\Im(A_1 A_2^*))$$

Dalitz technique is the only able to measure directly x,y, with sign and w/o rotations

Basic measurement of the strong phase $@\Psi(3770)$

$$e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}{}^0 \rightarrow f_1 f_2$$

 $J^{PC}=1^-$

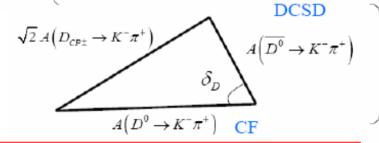
$$CP(f_1f_2)=CP(f_1)CP(f_2)(-1)^{l=1}=CP+$$

Two final states of opposite CP

If CP violation in charm is neglected: mass eigenstates = CP eigenstates

$$\begin{vmatrix} D_{CP} & \pm \\ \end{vmatrix} = \frac{1}{\sqrt{2}} \left[\begin{vmatrix} D^{0} \\ \end{vmatrix} \pm \begin{vmatrix} D^{0} \\ \end{vmatrix} \right]$$

$$\sqrt{2} A (D_{CP\pm} \to K^{-}\pi^{+}) = A (D^{0} \to K^{-}\pi^{+}) \pm A (D^{0} \to K^{-}\pi^{+})$$


$$f_{1}$$

$$Flavor mode$$

$$DCSD$$

$$D_{CP} (+) \to f_{1} f_{2}$$

$$CP \text{ eigenstate tag X flavor m}$$

$$\cos \delta_{D} = \frac{Br\left(D_{CP+} \to K^{-}\pi^{+}\right) - Br\left(D_{CP-} \to K^{-}\pi^{+}\right)}{2\sqrt{r_{D}}Br\left(D^{0} \to K^{-}\pi^{+}\right)}$$

as r_D is well measured $r_D = (3.76 \pm 0.09) \times 10^{-3}$ FNAL Seminar May 18 2007 Ian Shipsey

$$K^+K^- \leftarrow D_{CP} \leftarrow \psi(3770) \rightarrow D_{CP} \rightarrow K^-\pi^+ (-1)^{T}$$

+ = CP+

Mixing and CPV

- Mixing at 1% level does not prove the presence of New Physics
 - Ambiguous probe for New Physics (long distance QCD effects...)
- However, greatly widens the stage on which CP violation can appear as a manifestation of New Physics

- At SuperB precision measurements of mixing should be considered as a tool for searches for CPV and as validation of SuperB physics
- CPV, either in decay or in mixing or interference, is the way to Search for New Physics

New Physics via charm CPV

I. Bigi

Finding G somewhere in $\Delta C \neq 0$ is a seminal discovery -yet not a program, `merely' its first step!

Program (exp)

Study CP & T in

- ΔC = 1 vs. ΔC = 2; i.e., direct vs. indirect CF via t dependance
- □ CF vs. CS vs. DCS
- partial rates vs. Final State Distributions (FSD)
- down to 10-3 10-4 levels
 using runs at ~ 10 GeV & ~ 4 GeV

Only achievable with a 10^{36} machine!

Program (th)

- Develop phenomenology for GP & Tin FSD
- Derive reliable SM predictions
- Analyze NP scenarios -- in particular Little Higgs Models

Indirect CPV (in mixing)

• Observable sensitive to |q/p| ($\Delta C=2$)

$$A_{sl} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{|q|^4 - |p|^4}{|q|^4 + |p|^4}$$

$$N^{++} = \overline{D}^0 \to l^+ \nu K^-, \quad N^{--} = D^0 \to l^- \overline{\nu} K^+ \qquad D^0 = -, \overline{D}^0 = +, \quad l^{\pm} = \pm D^0 \to K^+ \pi^-$$

- At threshold $-\psi$ ''(3770)-, time dependent asymmetry can reveal a new source of WS leptons (violation of SM selection rules)
- Use sum of several exclusive channels

$$D^0 \to K^-\pi^+, K^-\pi^+\pi^0, K^-\pi^+\pi^0, K^-\pi^+\pi^+\pi^-,$$

Coherence forbids DCSD

K-e+ν, K*-e+ν, K-
$$\mu$$
+ν, K*- μ +ν, K+K-, π + π -(Σ (ε× \mathcal{B}) ~ 22.7%)

- Measurement can be performed
 - At threshold with D double-tagging
 - Clean environment (closed kinematics), smaller systematics
 - Sensitivities: $\delta A \sim 2.5\%/month$ (Only sl D⁰ \rightarrow K⁻ ℓ +v $\delta A \sim 9.5\%/month$) \rightarrow 4 months of running @ threshold (0.6 ab) \rightarrow $\delta A \sim 1\%$
 - At Y(4S) with D* tagging
 - More background, possible to tag the other c quark
 - Sensitivities: $\delta A \sim 2.7\%/year$ $\rightarrow 5$ years of running (75 ab) $\rightarrow \delta A \sim 1\%$

CPV in interference of mixing and decay

$$D^0 \to CP$$

- Observable sensitivity to $\phi = \arg\left(\frac{q}{p}\frac{\overline{A}_f}{A_c}\right)$ (interference between $\Delta C=1$ and $\Delta C=2$)
- Lifetime measurements in CP eigenstates: time distribution is exponential only approximately. Good approximation since mixing and CPV are small

$$y_{CP} = \frac{\tau_{K\pi}}{\left\langle \tau_{hh} \right\rangle} - 1 \quad , \quad \Delta Y = \frac{\tau_{K\pi}}{\left\langle \tau_{hh} \right\rangle} A_{\tau}$$

$$2y_{CP} = \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) (\pm y) \cos(\phi) - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) (\pm x) \sin(\phi)$$

$$2A_{\Gamma} = \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) (\pm y) \cos(\phi) - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) (\pm x) \sin(\phi)$$

$$A_{\Gamma} = \frac{\tau(\overline{D}^{0} \to CP) - \tau(D^{0} \to CP)}{\tau(\overline{D}^{0} \to CP) + \tau(D^{0} \to CP)}$$

- May require full time-dependent analysis with SuperB statistics

Sensitivities with 75/ab:
$$\sigma(\cos\phi) \approx \sigma(y_{CP})/y \approx 3 \times 10^{-4}/y$$

 $\sigma(\sin\phi) \approx \sigma(\Delta Y)/x \approx 3 \times 10^{-4}/x$

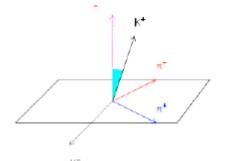
Direct CP

- Estimates from BaBar analysis to 75/ab from 2-body decays
 - D⁰→K⁺π⁻ in time dependent analysis

$$D^{0} \to K^{+}\pi^{-} \qquad A_{D} = \frac{R(D^{0} \to K^{+}\pi^{-}) - R(\overline{D}^{0} \to K^{-}\pi^{+})}{R(D^{0} \to K^{+}\pi^{-}) + R(\overline{D}^{0} \to K^{-}\pi^{+})} \qquad \qquad \sigma(A_{D}) \sim 0.4\%$$

- $D^0 \rightarrow K^+K^-, \pi^+\pi^-$ in time independent analysis (in this case, direct CPV effect mixed with indirect)

$$D^{0} \to CP$$


$$A_{CP} = \frac{R(D^{0} \to K^{+}K^{-}) - R(\overline{D}^{0} \to K^{-}K^{+})}{R(D^{0} \to K^{+}K^{-}) + R(\overline{D}^{0} \to K^{-}K^{+})} \qquad \qquad \sigma(A_{CP}) \sim 0.03\%$$

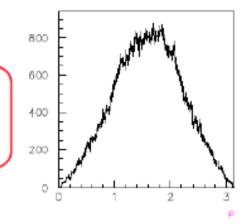
- Dalitz plot analysis, time integrated (e.g. Kshh)
 - Strong phase variation over resonances of the Dalitz plot can improve the sensitivity to the asymmetry
 - Asymmetry on regions of phase spaces can have different signs which could averaged out when integrating over the DP
 - Comparison of time-integrated CP conjugate DPs (model indep.) vs model dep.
 - From D⁰ $\rightarrow \pi^+\pi^-\pi^0$, expect sensitivity at 3×10⁻⁴ at SuperB
- Todd correlations in Cabibbo Suppressed decays $D^0 \to K^+K^-\pi^+\pi^-$

T-odd corrrelations

 \square Consider the Cabibbo Suppressed D^0 decay:

$$D^0 \to K^+ K^- \pi^+ \pi^-$$

 \square Compute the angle ϕ between the K^+K^- and $\pi^+\pi^-$ decay planes for $D^0 \to K^+K^-\pi^+\pi^-$. Then one has:


$$\frac{d\Gamma}{d\phi}(D^0 \to K^+K^-\pi^+\pi^-) = \Gamma_1 cos^2\phi + \Gamma_2 sin^2\phi + \Gamma_3 cos\phi sin\phi$$

$$\frac{d\Gamma}{d\phi}(\overline{D^0} \to K^+K^-\pi^+\pi^-) = \bar{\Gamma}_1 cos^2 \phi + \bar{\Gamma}_2 sin^2 \phi + \bar{\Gamma}_3 cos\phi sin\phi$$

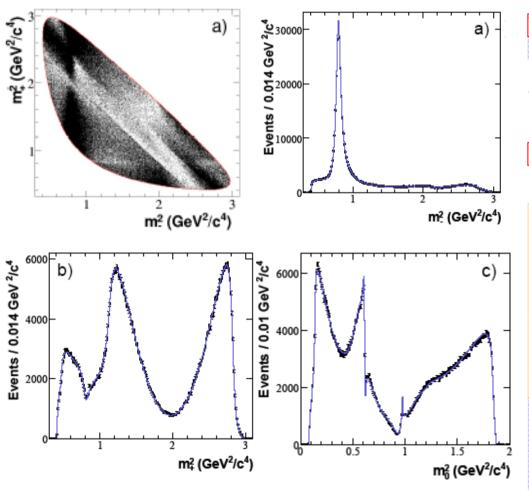
$$\Gamma_3 \neq \bar{\Gamma}_3 \rightarrow CP \quad violation$$

 \square Distribution of ϕ using BaBar data.

Sensitivity to T violation ~ 0.04% with 75 ab-1

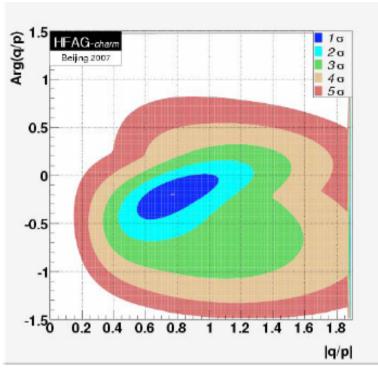
3-body decays and running energies

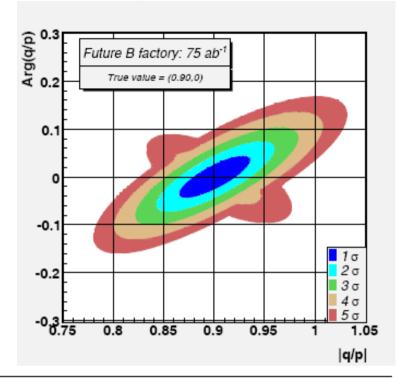
- Time-dependent Dalitz plot analyses are the golden modes for mixing, CPV in interference from mixing and decay, and perhaps too direct CP
 - Requires to keep under control Dalitz model systematics
 - Improved models with larger statistics
 - Full PWA analyses
 - Make use of $\psi(3770)$ data
 - Very hard to estimate w/o performing analysis, but extremely promishing
- Running at $\psi(3770)$ is important
 - Quantum coherence provides unique oportunity to directly measure and/or validate from other (mostly model dependent) measurements $D-\overline{D}$ strong phase


•
$$(x',y') \rightarrow (x,y)$$
 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Dalitz model systematics in 3-body (e.g. $K_S \pi \pi$) analyses
- Time-dependent measurements possible, but poor time resolution ($\sigma_t \sim \tau$) and poor statistical reach (cross-section 3×wrt 10GeV but luminosity 10×smaller)
- 0.6/ab (~4 months) would give ~1% (very clean) CPV in mixing

3-body decays and running energies (con't)


arXiv:0804.2089 [hep-ex] submitted to Phys. Rev. D


Component	$\Re\{a_r e^{i\phi_r}\}$	$\Im\{a_r e^{i\phi_r}\}$	Fraction (%)
K* (892)=	-1.314 ± 0.010	1.141 ± 0.009	55.7 ± 2.8
K_0^* (1430)	-7.3 ± 0.4	3.7 ± 1.2	10.2 ± 1.5
$K_2^{\bullet}(1430)^{-}$	-1.054 ± 0.019	0.936 ± 0.025	2.2 ± 1.6
K* (1680)-	-1.45 ± 0.10	-0.16 ± 0.10	0.7 ± 1.9
K* (892)+	0.116 ± 0.004	-0.107 ± 0.003	0.46 ± 0.23
K_0^* (1430)+	-0.26 ± 0.05	0.19 ± 0.07	< 0.05
$K_2^*(1430)^+$	0.008 ± 0.017	0.091 ± 0.016	< 0.12
$\rho(770)^{0}$	1	0	21.0 ± 1.6
$\omega(782)$	-0.031 ± 0.001	0.042 ± 0.001	0.9 ± 1.0
$f_2(1270)$	-0.559 ± 0.026	0.232 ± 0.023	0.6 ± 0.7
eta_1	1.82 ± 0.25	-9.1 ± 0.4	
β_2	-10.18 ± 0.19	-3.9 ± 0.5	
β_3	-23.7 ± 2.0	5.0 ± 1.6	
β_4 .	-0.1 ± 0.4	9.16 ± 0.24	
f_{11}^{prod}	2.19 ± 0.15	7.6 ± 0.3	ππ S-wave
$f_{12}^{' \text{prod}}$	1.9 ± 0.3	-0.6 ± 0.3	
f. prod	4.3 ± 0.3	2.8 ±0.3	
prod	3.22 ± 0.18	0.27 ± 0.14	
s_0^{prod}		-0.03	
ππ S-wave		_0.00	11.9 ± 2.6
M (GeV/e^2)	1.466 =	La ace	
$\Gamma \left(\text{GeV}/c^2 \right)$	0.233 ±		
F		E 0,09	
$\dot{\phi}_{P}$		-0.13	
\tilde{R}		K	Iπ S-wave
ϕ_R	-5,31 ±	E0.04	
a	1.07 ±	E 0.11	
•	-1.8 =	E 0.3	

CPV: today → SuperB

Fit	Parameter	HFAG Average	95% C.L. Interval
CPV	x(%)	$0.97^{+0.27}_{-0.29}$	(0.39:1.48)
	y(%)	$0.78^{+0.18}_{-0.19}$	(0.41:1.13)
	$R_D(\%)$	0.335 ± 0.009	(0.316:0.353)
	$\delta_{K\pi}(^{\circ})$	$21.9^{+11.5}_{-12.5}$	(-6.3:44.6)
	$\delta_{K\pi\pi^0}(^{\circ})$	$32.4^{+25.1}_{-25.8}$	(-20.3:82.7)
	$A_D(\%)$	-2.2 ± 2.5	(-7.10:2.67)
	q/p	$0.86^{+0.18}_{-0.15}$	(0.59:1.23)
	$\phi(^{\circ})$	$-9.6^{+8.3}_{-9.5}$	(-30.3:6.5)

Mode	Observable	$\Upsilon(4S)$	$\psi(3770)$
		(75 ab^{-1})	(300 fb^{-1})
$D^0 \rightarrow K^+\pi^-$	x'^2	3×10^{-5}	
	y'	7×10^{-4}	
$D^0 \rightarrow K^+K^-$	y_{CP}	5×10^{-4}	
$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$	x	4.9×10^{-4}	
	y	3.5×10^{-4}	
	q/p	3×10^{-2}	
	ϕ	2°	
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$
	y		$(1-2) \times 10^{-3}$
	$\cos \delta$		(0.01-0.02)

Summary

- A 10³⁶ machine (i.e. SuperB) is "the" unique facility within the reach for New Physics from CPV in charm
- Mixing measurements will significantly improve results from previous experiments,
 but should be seen as a physics calibration/validation of the experiment
- Running at Y(4S) + ~4 month at ψ ''(3770) offers complete framework to provide comprehensive picture of mixing and CPV measurements. ψ ''(3770) running would provide:
 - One order of magnitude more data than BESIII
 - Access to 1% sensitivity on CPV in mixing
 - Unique tool for several other key measurements (e.g. 3-body decays, measurement of strong phase for wrong sign $K^+\pi^-$ decays)

Assumptions made

- SuperB will accumulate 75/ab on the Y(4S)
 - Beam energies 7 GeV e⁻ on 4 GeV e⁺
 - 5 years operation @ $L_{peak} \sim 10^{36}/cm^2/s$
 - Data taking starts $\sim 2015 \Rightarrow 75/ab$ by ~ 2020
- SuperB can operate at different energies
 - L_{peak} scales with s
 - $L_{peak} \sim 10^{35}/cm^2/s @ \psi''(3770)$
- SuperB will be able to work with 80% polarized electron beam
- LHC operation will be successful
 - LHCb will accumulate 10/fb before SuperB starts
 - ATLAS & CMS will have plenty of data
 (no assumption whether or not NP is discovered at LHC
- SuperKEKB will start at ~2012 and will accumulate 10/fb @ Y(4S)
- BESIII will have accumulate 15/fb at $D\overline{D}$ threshold (100×smaller peak luminosity)

