Super Bfactory Workshop 2 June 2008

IFR fast simulation

Marcello Rotondo

I.N.F.N. Padova

2 June 2008

General stuffs

• Physics output:

- IFR reconstructed quantity that can be given as input to the Standard (or simplified) PID selectors
- Users should be able to access the IFR through the usual lines of code:
 - BtaCandidate* B;
 - BtaIfrQual* IfrQual=B->getMicroAdapter()->getIfrQual();
 - Float mIntLenght=IfrQual->measuredInteractionLengths();
- List of muons with different selection criteria will be provided to analysts

Muon selection

Muon cut based selctor Selection Variables Very Tight Tight [0.4, 0.5][0.4, 0.5] E_{cal} No. of Layers (N_L) >1>2Meas. Lambda (λ_{meas}) > 2.2> 2.2Delta Lambda $(\Delta \lambda)$ < 0.8< 1Track Fit Chisq. (χ^2_{fit}) < 3 < 3Track Match Chisq. (χ^2_{mat}) < 5< 5Track Continuity (T_C) < 0.34< 0.3Average Strip Mult. (\bar{m}) < 8< 8Sigma Strip Mult. (σ_m) < 4< 4

These variables are strongly correlated.

• To simulate the response of the IFR a realistic parameterization of the hadronic showers is important for the e/mu separation and the Klong identification.

Possible Approaches for a lfrFastSim

- (1) Parameterize the final reconstructed quantities:
 - Start using the existing BaBar data
 - Generate for each track the IFR reponse randomly in bins of p, theta, phi, LundID.
- (2) Parameterize the basic IFR ouput (strip multiplicity per layer, etc.)
 - Reconstruct the relevant quantity

2 June 2008

Advantages: PDFs from the BaBar data

- output is -realistic-: hadronic (pions, Kaons) interactions within the IFR and before the IFR are , parameterized
- Effect of the DCH-IFR matching are taken into account
- Disantvantages:
 - parameterization needs to be changed according to the design optimization (full simulation) of the Super B detector
 - Correlations between the reco-quantities are difficult to account and are important for the mu-ID

- Parameterize the final reconstructed quantities in bins of (p, theta, phi, LundID):
 - IFR geometry will be very similar to the SuperIFR: material before the IFR will be ~the same

Some examples

• Use clean samples of muons ($\mu\mu\gamma$) and pions ($\tau\tau$): select a particular bin, for ex. (barrel): $\theta(57^{\circ}-80^{\circ})$, p(2.0-4.0 GeV)

Measured IntLenght

2008

Approach (2)

- For each track generate the multiplicity, spread of the hits per layers:
- Advantages:
 - PDFs can still be obtained from the BaBar data
 - output is -realistic-: hadronic (pions, Kaons) interactions within the IFR and before the IFR are parameterized
 - Correlations are easily accounted
 - Parameterizations can be changed according to the detector design: number of layers, hit multiplicity, amount of iron
 - Disantvantages:
 - A layer of code to reconstruct the Ifr reco-objects is needed (reuse the BaBar code?)
 - We need to simulate the effect of the DCH-IFR matching,

Summary

•

- We evaluated different approaches
- Originally the preferred design
 - was to use the approach (1), just using a subset of the reconstructed variables
- We will use the approach (2), more stable and easy to update with the
- We are in time to provide a first IFR output by the end of June
- People involved in the project:

G. Castelli, M. Rotondo (Padova University and INFN)