SIMULATION STATUS OF IFR

Mauro Munerato, University of Ferrara Elba 31 May 2008

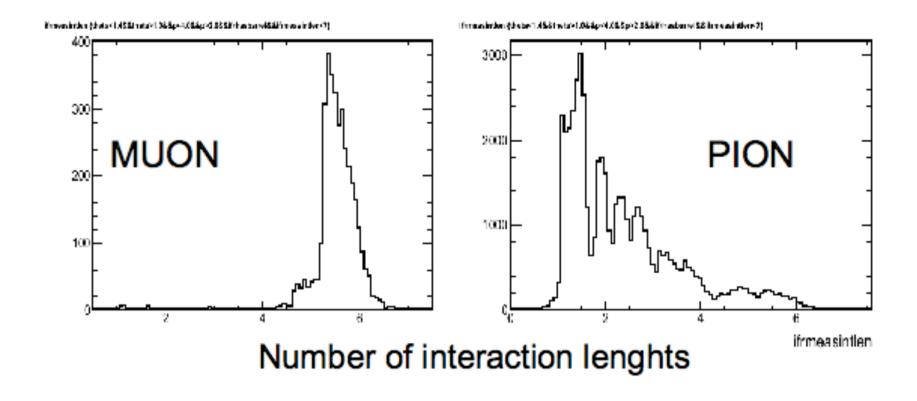
OUTLINE

Ifr Group Simulation

Geant4 Simulation

Ifr optimization

IFR SIMULATION GROUP


• Fast Simulation: G. Castelli (Padova), M. Rotondo (Padova)

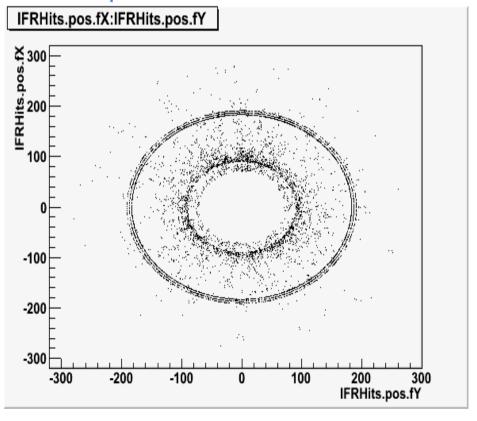
Geant4: M. Andreotti (Ferrara), G. Cibinetto (Ferrara),
 M. Rotondo (Padova)

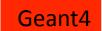
• Detector optimization: M. Andreotti (Ferrara), M. Munerato (Ferrara)

FAST SIMULATION STATUS

- Many changes in PravdaMC:
 - → TRACKERR is going to be changed with PacTrk (main developer David N. Brown)
- IFR output will be parameterized:
 - → Parameters/distributions from the n-tuple produced by the BaBar PID group
 - → Generate the relevant variables for each particle type: p, theta and phi;

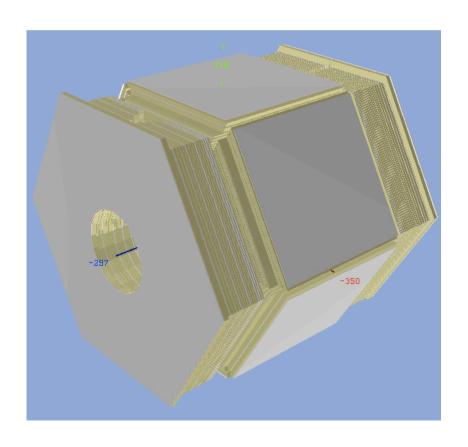
- Release a preliminar version useful for physics by the end of June
- Than improve the parameterizations according to the detector/optimization design

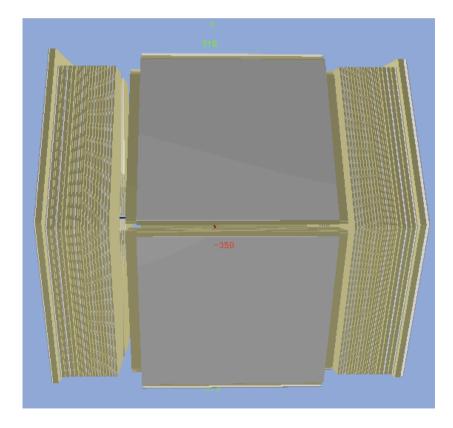



GEANT4 SIMULATION

 A full IFR description is needed for background simulation, detector optimization and to extract the parameters for the

fast simulation.


 In February the IFR appeared like this



REAL IFR

 Now we have a preliminary version if the IFR description with the proper geometry

FEATURES OF IFR DESCRIPTION

 The description file is generated by a script to allow the production of different configuration: number of active layers/ absorber.

- The SuperB IFR is designed starting from the BaBar IFR, using the same iron structure and adding active scintillator layers.
- No segmentation in the active layers (just one big scintillator slab) to allow offline reconstruction with different configurations.

To Dos

- Q.A. test on the IFR description will be done using $\mu\mu$ or $\mu\mu\gamma$ events produced by the simulation group.
- We need to finalize the merging with the other subdetectors and the machine simulation(some volumes are overlapping): right after the Elba meeting.
- Once simulated background events will be available we will use them in the BaBar framework for a fine detector optimization.

IFR OPTIMIZATION

IDEA

A FIRST IDEA FOR THESE STUDIES IS TO USE THE BABAR FRAMEWORK SINCE WE NEED A RECONSTRUCTION INFORMATION FROM OTHER DETECTORS

WHAT WE NEED?

PRIVATE VERSION OF DB

BACKGROUND EVENTS FROM FULL SIMULATION

WORK DONE

- The setup for doing study of IFR configuration has partly been done
- Understood how to change the IFR Geometry and how to upload changes in DB
 - Some bugs found and fixed in package utilized for reconstruction
 - Checking package dependencies for having an optimal configuration

To Dos

- Fix some remaining issues with PID
- Add to simulated $\mu\mu$ events a background function \rightarrow this will be done using IfrNoise module
- Study different configurations of IFR geometry and then evaluate the efficiency of reconstruction
 - Use optimal parameters in the full/fast simulation

SUMMARY

- First description of IFR available
 - Ready to analyze backgrounds
- Insert the background in μμ events
- Study different configurations of absorbers/scintillators
 - Insert parameters obtained in full/fast simulation

Backup Slides

SETUP

- Release 24.1.3
- Package used for making ntuples: BetaPidCaliNtuple
 - Packages used for modify DB:
 - CdbRooConversionFwk, CdbRooConverters, CdbRooTools
 - Packages for modify IFR geometry:
 - IfrGeom, IfrProxy, IfrSim