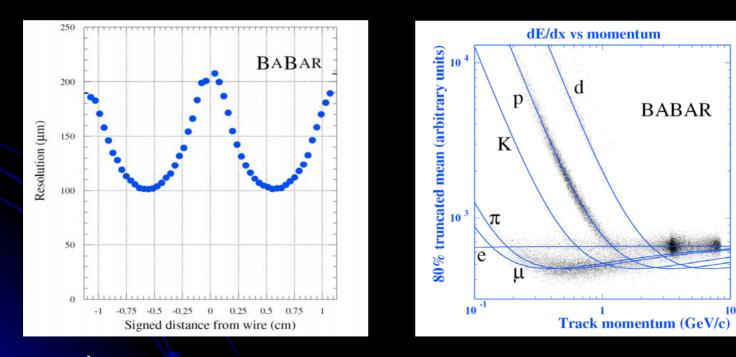
SuperB Drift Chamber overview


G. Finocchiaro LNF-INFN

31 May 2008

What we know

The BABAR DCH worked well for almost 10 years

 Hit and momentum resolution, tracking efficiency, *dE/dx* matched (or exceeded) design

~ no aging

Elba, 31 May 2008

What we want

I. A lighter structure, all in Carbon Fiber (CF)

- e because we know this can be done
- II. A faster detector
 - because we know life will be tougher @ SuperB
- III. Faster R.O. electronics
 - for the same reason

IV. Lighter FEE (including shielding & cooling)

because we may want to place detectors behind the DCH backward endplate now

Total load due to tension of 27k wires in BABAR DCH is ~3.5 tons

- > 12(24) mm thick AI endplates \rightarrow 13(27)% X_0
- 3 Carbon Fiber options studied for the SuperB DCH
 > Flat CF endplates

 20mm CF (0.075X₀), max deformation (d_{max}) ~1mm

 > Spherical CF endplates (both concavities)
 < 4mm CF (0.015X₀), max deformation (d_{max}) <1mm
 > Conic + spherical CF endplates
 < 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

Total load due to tension of 27k wires in BABAR DCH is ~3.5 tons

- > 12(24) mm thick AI endplates \rightarrow 13(27)% X_0
- 3 Carbon Fiber options studied for the SuperB DCH> Flat CF endplates
 - ✓ 20mm CF (0.075 X_0), max deformation (d_{max}) ~1mm
- Spherical CF endplates (both concavities)
 - \checkmark 4mm CF (0.015 X_0), max deformation (d_{max}) <1mm
- Conic + spherical CF endplates
 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

Total load due to tension of 27k wires in BABAR DCH is ~3.5 tons

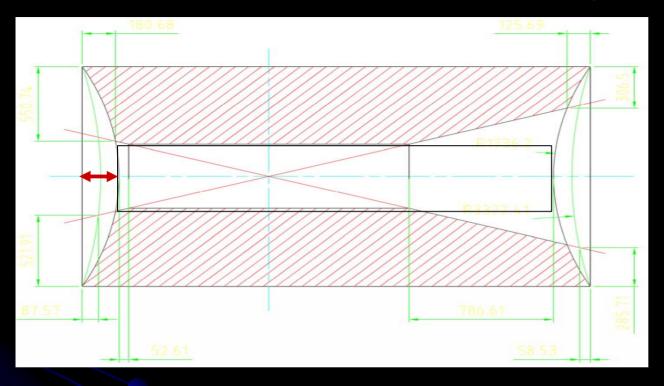
- > 12(24) mm thick Al endplates \rightarrow 13(27)% X_0
- 3 Carbon Fiber options studied for the SuperB DCH
 ▶ Flat CF endplates
 ✓ 20mm CF (0.075X₀), max deformation (d_{max}) ~1mm
 ▶ Spherical CF endplates (both concavities)
 ✓ 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

Conic + spherical CF endplates
 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

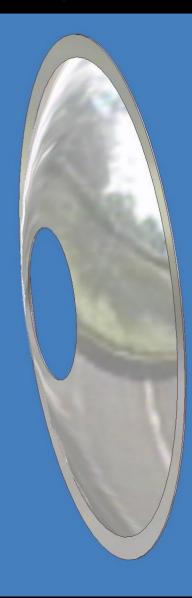
Total load due to tension of 27k wires in BABAR DCH is ~3.5 tons

- > 12(24) mm thick AI endplates \rightarrow 13(27)% X_0
- 3 Carbon Fiber options studied for the SuperB DCH
 Flat CF endplates

 20mm CF (0.075X₀), max deformation (d_{max}) ~1mm

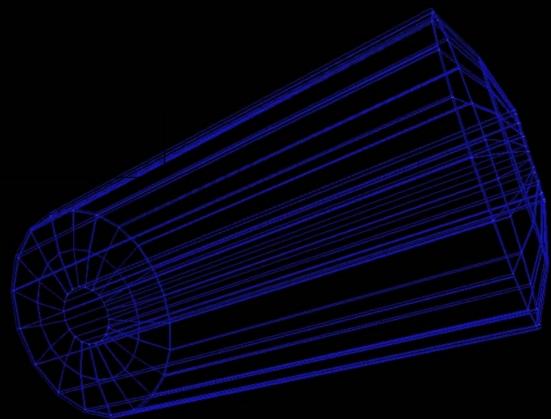

 Spherical CF endplates (both concavities)

 4mm CF (0.015X₀), max deformation (d_{max}) <1mm


 Conic + spherical CF endplates

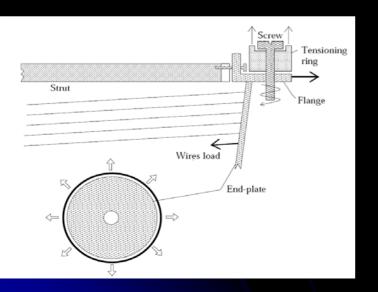
 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

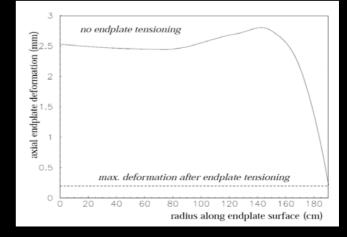
Spherical end-plates (concave)


Thickness O(4mm), or $0.015 X_0$ sagitta=200mm $\rightarrow d_{max200} \le 0.5$ mm sagitta=100mm $\rightarrow d_{max100} \sim 2xd_{max200}$

Spherical end-plates (convex)

Convex shape could fit better e.g. with forward PID device




again, thickness O(4mm), or $0.015 X_0$ sagitta=200 mm $\rightarrow d_{max200} \le 0.5$ mm sagitta=100 mm $\rightarrow d_{max100} \sim 2xd_{max200}$

Spherical EP concept proved in the KLOE DC

- R_{max} ~ 2m
- 52,140 wires
- total load ~ 3.5 tons
- EP thickness 9 mm
- Plate deformations recovered with CF "stiffening ring"
 - Given the smaller radius of the SuperB
 DCH, we can probably avoid this
 complication

Total load due to tension of 27k wires in BABAR DCH is ~3.5 tons

- > 12(24) mm thick AI endplates \rightarrow 13(27)% X_0
- 3 Carbon Fiber options studied for the SuperB DCH
 > Flat CF endplates

 20mm CF (0.075X₀), max deformation (d_{max}) ~1mm

 > Spherical CF endplates (both concavities)

 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

 > Conic + spherical CF endplates

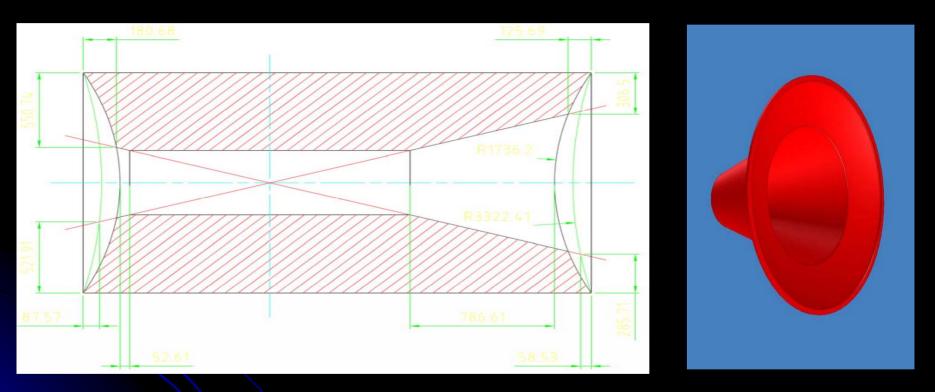
 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

Total load due to tension of 27k wires in BABAR DCH is ~3.5 tons

- > 12(24) mm thick AI endplates \rightarrow 13(27)% X_0
- 3 Carbon Fiber options studied for the SuperB DCH
 > Flat CF endplates

 20mm CF (0.075X₀), max deformation (d_{max}) ~1mm

 > Spherical CF endplates (both concavities)

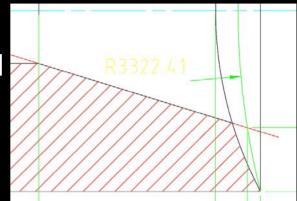

 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

 > Conic + spherical CF endplates

 4mm CF (0.015X₀), max deformation (d_{max}) <1mm

Option #3: conical end-plates

Expect high particle flux in forward direction. Conic-shaped EP's might help reducing occupancy in inner layers.


Thickness O(4mm), or $1.5\% X_0$ (perp. to walls) $d_{max}\sim 0.5mm$

Option #3: conical end-plates (cont.)

 Besides the trickier structural analysis,conical endplates would pose several problems though:

- 1) drilling the holes at a very small angle
- 2) ensuring a flat seat for the feed-throughs
- 3) stringing the wires in the conical section
- 4) a lot of material seen by electrons tangential to the cone ⇒a lot of background produced

None of the above (excluding 4), which needs careful investigation) looks unsurmountable, but we should be aware that conic end-plates are not exempt from issues.
An alternative solution to this problem on talk #3 in this session.

Perspective: decisions to be taken before the TDR

New cell structure

- attack this problem with newly available simulation tools (next months)
- test new cell and gas mixtures with prototypes (~1 year from now)
- see next talk
- Define mechanical structure
 - simulation
 - Interplay with other detectors (length, offset, shape)
 - Once geometry outlined, make detailed FEA calculations

Electronics design

- Actual work starting next year
- Understand requirements meanwhile
- will be discussed during session on electronics on June 2nd