PID electronics

J. Va'vra, SLAC

Content

Expected DIRC electronics

- Detector choice
- Possible electronics design concept
- Test results

• Forward PID electronics

- Detector choices: TOF or FARRICH
- Possible electronics design concept
- Test results (from TOF tests only)

Expected DIRC pixel rates at Super-B

• Expected DAQ performance

DIRC electronics

Proposed DIRC electronics chain

Waveform sampling principle: Switched Capacitor Array

G. Varner, Larry Ruckmann and A. Wong, arXiv:0802.2278v1 [physics.ins-det], submitted to NIM, 2008

Principle of wafeform sampling in BLAB chip:

- Fast signal waveform is terminated in 50 Ω on the chip
- BLAB1: 1ch & 128 rows & 512 samples (64k storage cells); BLAB2: 17ch & 6 rows & 1024 samples (102k storage cells)
- Each row can be independently addressed to initiate a storage cycle
- When analog switch is closed the instantaneous signal is stored on a 14 fF capacitor
- ADC conversion is done via the Wilkinson method:
 Comparators done inside BLAB chip & high speed encoding done in FPGA 32 samples are converted in parallel
- 10-bits corresponds to a conversion time of 1 μ s in the current scheme.
- Up to 10 GSa/s (100ps sampling interval <=> ~5 samples on the leading edge).
- 12 μ s latency: (a) TOF: self-trigger and digital temporary storage

(b) FDIRC: analog storage

Both BLAB chips are still prototypes, no final storage configuration implemented yet ! 6/2/08 J. Va'vra, PID electronics

Notes:

- 1. BLAB2 chip will be submitted to foundry by June 2.
- 2. Improvemnts over BLAB1:
 - a) a larger sampling depth
 - b) 2x sampling rate
 - c) improved BW
 - d) triggering, etc.

Summary of BLAB2 ASIC parameters

G. Varner

Parameter	Value		
Samples	6 rows & 1024 samples		
Triggering mode	Trigger on individual pixel		
Analog BW	~ 0.85 GHz		
BLAB2 chip input impedance	30-80 Ω (adjustable)		
Number of MaPMT pixels / BLAB2 ASIC	16		
Number of BLAB2 ASICS / MaPMT (final vs. prototype)	2 - 4		
Dynamic range	1mV / 1V		
Cross-talk	< 0.1%		
BLAB2 wafeform sampling speed	1 - 10 GSa/sec		
On chip ADC	1 GHz Wilkinson		
Number of Wilkinson conversions in parallel	32		
ADC resolution	10 bits		
ADC conversion time for 10 bits	1 µs		
Number of words / event	32 - 512		
Read time for 16 channels (1 BLAB2 chip) / event	16 µs		
Sustained readout speed	50 kHz		
12 μs latency accomplished by	Self-trigger & analog or digital storage		
Cost per chanel	< \$10 in volume		

Test results

BLAB1 electronics in the FDIRC prototype beam test at SLAC

Electronics by Gary Varner & Larry Ruckman & data analysis by Joe Schwiening

 $\Delta t = time_{measured} - time_{expected} [ns]$

- Use Minicircuit VAM-6 preamplifier with a 43dB gain, ~6 GSa/s waveform sampling
- 16 channels instrumented (one BLAB1 chip) on one Burle/Photonis MCP-PMT.
- The new electronics performed very well; better than our CFD-based electronics
- Very small time dependence on pulse height observed.

BLAB2 lectronics for the next beam or cosmic ray tests at SLAC

Gary Varner & Larry Ruckman

- Prototype boards with BLAB1 chip now exists; BLAB2 chip is almost ready and will be sumbitted to a foundry on June 2.
- To instrument all 64 pixels one needs 4 BLAB chips. That is what we want to have in the prototype in the fall. However, the final DIRC will very likely use 2 chips per MaPMT (2 pads ganged together, 32 pixels/MaPMT).
- Worry about a minituarization later.

Forward PID electronics

Various timing schemes for TOF

Timing strategies for TOF detector

1) High detector gain operation:

- Either <u>no</u> amplifier, or a small amplification only: - One would expect much worse aging effects due to a high gain operation.
- Single pe- sensitivity (with an amplifier):
 In addition to the above comment, a very poor pulse recovery

2) Low detector gain, linear operation:

- Constant-fraction-discriminator (CFD).
- CFD + additional pulse height correction.
 A slight time-walk as number of photoelectrons corrected by the QTNT + ADC
- Waveform sampling (a'la Gary Varner's design from U. of Hawaii). - The most powerful timing method.
- Double-threshold timing on both leading and trailing edges.
- Single threshold on both leading and trailing edges. - The most simple.

400ps/div, 20mV/div

J. Va'vra, PID electronics

6/2/08

Example of TOF electronics for MCP-PMT

Example of FARRICH electronics for MCP-PMT

Test results

Calibration of BLAB1-based electronics resolution

Gary Varner and Larry Ruckmann

Two identical pulser pulses:

BLAB1 chip:

This resolution would be sufficient for the Super-B TOF, and too good for FARRICH

id-100 Quantique single cell G-APD : $\sigma_{TTS} \sim 17$ ps (company's data)

6/2/08

Expected rates and DAQ performance

DIRC expected rates at Super-B

J. Va'vra and B. Ratcliff

• **BaBar empirical scaling law for DIRC PMT rate:**

Sector 3: PMT rate/kHz ~ 5.3 I_{LER} / A + 19.2 I_{HER} / A + 22.2 LUMI / 10³³

=> PMT Rate (LUMI contribution) ~200 kHz at L ~ 10^{34} , which agrees what we observe when things are good !!! => If we blindly use this formula we get a PMT Rate > 20 MHz at L ~ 10^{36} .

- We know that our Belle friends do not have a LUMI term.
- We will assume that Super-B LUMI term is 10% of the BaBar LUMI term.
- Simple method to estimate the pixel rate for the option 3 (H8500 MaPMT):

Expected DAQ performance for DIRC

G. Varner & J. Va'vra

Expected DAQ performance for TOF

Appendix

DIRC options					Favored
	BaBar DIRC	Option 1	Option 2	Option 3	Option 4
PMT type	ETL 9125B	equivalent	upgraded	MaPMT 8500	MaPMT 8500
No of pixels/PMT	1	1	1	8x8 = 64	4x8 = 32
PMT rise time	~1.5 ns	~1.5 ns	0.5 - 1.0 ns	~ 0.5 ns	~0.5 ns
PMT σ _{TTS}	1.6 ns	~1.5 ns	0.25 - 0.5 ns	~150 ps	~150 ps
Expected PMT gain	~3x10 ⁶	similar	similar	~10 ⁶	~10 ⁶
Amplifier voltage gain	~10	~10	~10	40-60x	40-60x
Typ. pulse height	~40 mV	equivalent	equivalent	A few hundred mV	A few hundred mV
Typ. expected rate/PMT	~200 kHz	1 MHz	1 MHz	~50 kHz/pixel	~100 kHz/pixel
TDC/ADC equiv. resol.	500 ps/count	500 ps/count	~100 ps/count	~50 ps/count	~50 ps/count
Waveform analysis	no	no	no	yes	yes
Integration	Custom front end	similar	similar	ASIC for 64 ch.	ASIC for 32 ch.
Latency	12 µs	12 µs	12 µs	12 µs	12 µs
Max. DAQ rate	10 kHz	100 kHz	100 kHz	100 kHz	100 kHz
Data link	1.2 Gbit fiber	upgrade	upgrade	upgrade	upgrade
No of channels	12,000	12,000	12,000	64,000	32,000
No of detectors	12,000	12,000	12,000	1000	1000

Options:

1. DIRC detector as it is now, but replace PMTs to types with similar specs ($\sigma_{TTS} \sim 1.5$ ns)

2. **DIRC detector as it is now, but upgrade PMTs to types with faster transit time spread** ($\sigma_{\text{TTS}} \sim 250 - 500 \text{ ps}$)

3. "Non-focusing or Focusing DIRC" with a new SOB - Use flat panel H-8500 MaPMT (Gary Varner's waveform digitizer)

4. "Non-focusing or Focusing DIRC" with a new SOB - Use flat panel H-8500 MaPMT (two pixels shorted together)

FDIRC photon detector candidates - options 3&4

Nucl.Inst.&Meth., A 553 (2005) 96

Hamamatsu H-8500 MaPMT (64 pixels, 6x6mm pad, orts ~140ps)

Detectors: \$1.6M/1000 Electronics: \$1.1M/1000

- 64-pixel nominally; however, we may short 2 pixels together in x-direction. \mathbf{O}
- Total overall MaPMT tube rate: ~ 3.2 MHz •
- What is a max useful rate the tube can take ? ~30 MHz ? Need tests !
- HERA-B had up to ~20 MHz/16 pixel MaPMT (P. Krizan).

	Favored		
	Option 1	Option 2	Option 3
PMT type	Burle MCP-PMT, 10 μm	Burle MCP-PMT, 10 µm	Burle MCP-PMT, 10 μm
No of pixels/PMT	8x8 = 64	8x8 = 64	4x4 = 16
Input capacitance/pix	~ 5 pF	~5 pF	~20 pF
PMT rise time	~ 200-400 ps	~ 200-400 ps	~ 300-500 ps
Expected PMT gain	$\sim 8 \times 10^4 @0 \text{kG}, \sim 4 \times 10^5 @16 \text{kG}$	~8x10 ⁴ @0kG, ~4x10 ⁵ @16kG	~8x10 ⁴ @0kG, ~4x10 ⁵ @16kG
PMT σ _{TTS}	~30 ps	~30 ps	~30 ps
No of photoelectrons	~ 50 / 1 cm of radiator	~ 50 / 1 cm of radiator	~ 50 / 1 cm of radiator
Raw pulse height/50pe ⁻	~ 50 mV	~ 50 mV	~ 40 mV
Particle track rate/PMT	A few kHz	A few kHz	A few kHz
Pixel rate	~ 500 Hz	~ 500 Hz	~ 125 Hz
TDC/ADC equiv. resol.	5-10 ps/count	5-10 ps/count	5-10 ps/count
Amplifier gain	~10x	~10x	~10x
Effective front end BW	0.7-1 GHz	0.7-1 GHz	0.7-1 GHz
Timing scheme	CFD + ADC correction	Waveform digitization (~10 GSa/s)	Waveform digitization (~10 GSa/s)
Latency	12 µs	12 µs	12 μs
Total number of pixels	64,000	64,000	16,000
No. of detectors	1000	1000	1000

Options:

1. TOF with CFD/TAC/ADC & Time-over-threshold ADC correction (a'la Jeff Peck, retired ORTEC engineer)

2. TOF with waveform digitization (a'la Gary Varner)

3. The same as option **2**, but short **4** pixels together (live with a larger capacitance)

A laser-based result with two TOF counters

J. Va'vra et al., SLAC-PUB-13073, Jan. 2008

Two detector resolution (Npe \sim 50 pe ea.):

Each detector has Npe ~ 50 pe⁻:

Running conditions:

- 1) Low MCP gain operation (~1.4x10⁵)
- 2) Linear operation
- 3) CFD discriminator
- 4) No additional ADC correction
- 5) 4 pixels connected
- 6) Radiator illuminates 4 pixels only
 - Two Burle/Photonis MCP-PMTs with 10 μm MCP holes operating at 2.27 & 1.88 kV.
 - Ortec 9327Amp/CFD (two) with a -10mV threshold and a walk threshold of +5mV & TAC566 & 14 bit ADC114

6/2/08

Burle/Photonis MCP-PMT 85012

MCP-PMT 85012-501:

J.V., log book #3

- 10 µm MCP hole diameter •
- 64 pixel devices (use a single pad, ground the rest) igodol
- $C_{Anode-to-ground} \sim 5.5 \text{ pF}$ •
- 1 GHz BW scope limits the rise time ullet
- **MCP-PMT rise time:** $\sqrt{500^2 350^2 230^2} \sim 270$ ps 0 $=> BW_{MCP-PMT} \sim 0.35/270 ps \sim 1.3 GHz$

PiLas laser diode

With the PiLas red laser diode (635 nm): \mathbf{O}

 $\sigma_{\rm TTS} \sim \sqrt{(32^2 - 13^2 - 11^2)} = 27 \text{ ps}$

Hamamatsu C5594-44 amplifier 1.5 GHz BW, 63x gain

J. Va'vra, PID electronics

Electronics (TDC mainly)

S/N MCP-PMT 85012

J.V., log book #5

With a 1 GHz BW scope:

1mV/div, 1ns/div

Laser pulse, ~50 pe⁻, no amplifier, Gain ~ 1.4×10^5

10mV/div, 1ns/div, 2.22kV, 4 pads connected

 $(S/N)_{pp} \sim 43 mV/0.5 mV \sim 80$

6/2/08