Preliminary SVT bkg studies with the new simulation

G. Marchiori, E. Paoloni

Backgrounds (to be) simulated

- Main processes expected@SuperB:
 - Luminosity-dependent:
 - radiative (and elastic) Bhabhas
 - pair production
 - Bunch density-dependent:
 - Touschek (HER, LER)

- Current-dependent:
 - beam-gas scattering
 - synchrotron radiation

- first bunch of (few, very time consuming) bkg events very recently simulated with quite realistic SuperB model:
 - radiative Bhabhas
 - Touschek in the LER
 - pair production
- a <u>very preliminary</u> analysis of the SVT bkgs in those events is shown here

New Interaction Region simulation

- Parameters of new final focus from MAD files of HER/LER FF (Marica)
 - converted to GDML via a custom version of BDSIM (Geant4-based tool for beamline studies) (GM)
 - automatic positioning of all the optics elements (modeled as iron cylinders)
 - automatic addition of straight drift sections (iron cylinders 1 mm-thick)
 - the magnetic field multipole coefficients are also stored (as additional volume attributes) in the GDML file (hacked the Geant4 GDML writer, GM)
 - read-back and setting of correct magnetic field inside not yet fully deployed, temporarily hard-coded into the C++ simulation code
 - some manual work required in order to:
 - have the two beamlines coexist
 - place a cross beampipe around the I.R.
 - place a 3cm-thick W shielding around the beamline (previously was between 6 and 13 cm)

More detailed SVT model

- The previous (CDR) simulation used a simplified SVT model:
 - 6 cylinders in the barrel (L0 @r=1.2 cm, 50 µm thick, L1-5 @same r as in BaBar)
 - 2 wedges in the forward and backward directions (L4-5, like current SVT)
- The current simulation uses a more realistic SVT model:
 - the BaBar SVT, with 5 layers of Si wafers, ribs, supporting cones (obtained directly from the full BaBar Geant4-based MC, EP)
 - + inner L0 (r=1.5 cm, 9 cm long, 300 µm thick)
- The hit-counting algorithm has remained the same as in the CDR simulation
 - in every layer, 1 SVT hit = sum of all the Geant4 hits with $|\Delta z| < 50 \ \mu m$, $|\Delta r| < 50 \ \mu m$ and $|\Delta r| < 300 \ \mu m$ (may be inappropriate for MAPS in L0)

<u>F</u>ile <u>C</u>amera

Radiative Bhabha's ($e^+e^- \rightarrow e^+e^-\gamma$)

- showers and backscattered particles in the downstream beamline elements
- 10 BX (frequency=209 MHz → 50ns) simulated with E_Y > 10% E_{beam} (simulation interfaced to BBBREM generator by EP)
- In the CDR: rate O(100kHz) @ 1.2 cm, lower in outer layers
- With the current FF (stat. errors only, due to limited MC stat.):

Layer	Rate e-	Rate e+
0	1.0±0.5 MHz/cm ²	1.5±0.6 MHz/cm ²
1	negligible	negligible
2	negligible	negligible
3	negligible	negligible
4	negligible	negligible
5	negligible	negligible

higher in L0,
but tolerable

•more stat. needed

investigate
shielding close
to L0

Touschek background

- Intra-bunch Coulomb scattering ⇒ depends on bunch density ⇒ beamline optics
- Major source of concern during CDR finalization
- Simulation interfaced to external generator of Touschek particles provided by Manuela Boscolo (LNF), which takes into account
 - lattice optical functions
 - possible collimators
- With CDR FF, expected rate in L0 was 23 MHz/cm²! With new FF and scrapers:

Layer	e- from LER	e+ from LER
0	12.8±1.4 kHz/cm ²	1.3±0.1 kHz/cm ²
1	5±2 Hz/cm ²	2.9±1.5 Hz/cm ²
2	6±2 Hz/cm ²	2.9±1.3 Hz/cm ²
3	324±80 Hz/cm ²	8.4±1.5 Hz/cm ²
4	127±35 Hz/cm ²	0.05±0.01 Hz/cm ²
5	19±5 Hz/cm ²	5±1 Hz/cm ²

preliminary

e- from HER	e+ from HER
537±17 kHz/cm ²	170±10 kHz/cm ²
50±3 kHz/cm ²	20±2 kHz/cm ²
16±1 kHz/cm ²	7.2±0.9 kHz/cm ²
6.4±0.5 kHz/cm ²	0.8±0.1 kHz/cm ²
1.2±0.1 kHz/cm ²	0.12±0.03 kHz/cm ²
0.56±0.06 kHz/cm ²	~0 Hz/cm ²

Pair production ($e^+e^- \rightarrow e^+e^-e^+e^-$)

- Very high production rate (σ ~7.3 mbarn \Rightarrow R~7.3GHz at L=10³⁶cm⁻²s⁻¹)
- Soft particles, typically loop in solenoidal field and affect only the tracker
- Not fully simulated with Geant4 for CDR bkg estimate based on kinematics
 - Expected average rate = O(15MHz/cm²) @r=1.2cm, 5MHz/cm² @r=1.5cm assuming perfectly helical trajectories, using GuineaPig
- Recently simulated 700 events (~100ns) (interface to Diag36 by EP)
 - bkg mainly due to electrons (positrons annihilate before hitting the SVT)
 - between O(100) and O(5) kHz/cm² in L1-5
 - discrepancies between the expected rate and momentum distribution of incident particles in L0 currently not understood

Pair production bkg in L0

- Energy spectrum of slow e[±] particles hitting the L0 softer than expected
 - in the pure helical case, only tracks with pT>3.4 MeV reach the L0 @1.5 cm
 - we see hits due to particle with total energy down to the e rest mass:

More on pair production and L0

- Naive hit-counting yields a ~5x higher bkg hit rate than expected
 - is there a problem with the way we (don't?) deal with low-energy secondaries?
 - do we have to tune production cuts for secondary particles in the Geant simulation?
 - include in the offline analysis the total energy of the cluster?
 - is this just the effect (non-negligible) of hard scattering of soft particles?
 - do we need to add an Au/Ta foil to central beampipe?
 - is there something strange going on with the Geant4 tracking?
 - do we have to model adequately the charge collection in the silicon thickness (only the charge in the thin epitaxial layer is collected by MAPS)?

Secondary particles (delta rays)?

 Looking at incident kinetic energy, deposited energy and step length there are clearly two different regimes

Looking at one peculiar event

Conclusion

• Two main goals achieved:

- realistic FF and SVT models implemented in Geant4 bkg simulation
- preliminary study of main bkg sources encouraging (apart not-yet-understood background from soft particles in pair production), but needs more statistics

• Still lots of important work to do:

- Extensive debug of geometry/fields/tracking, understanding soft particles' bkg
- Reconsider definition of physical hits
- Implement digitization
- Include single beam bkgs (lost beam, SR) in simulation and study impact on detector
- We are lacking both expertise AND manpower. You are welcome to JOIN us!