FAST SIMULATION MEETING 31 May 2008

IFR fast simulation: Status

Marcello Rotondo

I.N.F.N. Padova

31 May 2008

General stuffs

- **G. Castelli** (Padova University and INFN) just joint the Fast simulation group
- IFR fast simulation will not be used for the detector design/optimization
 - Any input will be parameterized
 - Dedicated studies are ongoing with the BaBar full simulation
 - These studies will also be used to find parameterization or adjustments in the parameters/parameterizations

General stuffs

- **First step:** parameterized output using the standard BPC ntuples
 - IFR geometry will be very similar to the SuperIFR: material before the IFR will be ~ the same
 - We will provide in a reasonable time scale a realistic output that can be used for physics
 - Advantages: output is -realistic-: hadronic (pions, Kaons) interactions within the IFR and before the IFR are parameterized with data
 - Disantvantages: parameterization needs to be changed according to the design optimization (full simulation)

Muon selection

Selection Variables	Very Tight	Tight
E_{cal}	[0.4, 0.5]	[0.4, 0.5]
No. of Layers (N_L)	> 1	> 2
Meas. Lambda (λ_{meas})	> 2.2	> 2.2
Delta Lambda $(riangle \lambda)$	< 0.8	< 1
Track Fit Chisq. (χ^2_{fit})	< 3	< 3
Track Match Chisq. (χ^2_{mat})	< 5	< 5
Track Continuity (T_C)	< 0.34	< 0.3
Average Strip Mult. (\bar{m})	< 8	< 8
Sigma Strip Mult. (σ_m)	< 4	< 4

We will parameterize the distributions of these quantity

Future: we will generate Hits in the IFR (strips multiplicity, etc etc) and compute the relevant quantities from the basic detector inputs - a reconstruction layer will be needed: reuse the BaBar code

Some examples

• Use clean samples of muons ($\mu\mu\gamma$) and pions ($\tau\tau$): select a particular bin, for ex. (barrel): $\theta(57^{\circ}-80^{\circ})$, p(2.0-4.0 GeV)

Other examples: measured IntLenght

1200

ifrmeasintlen {theta<1.4&&theta>1.0&&p<4.0&&p>2.0&&ifrhasbarrei&&ifrmeasintlen<7}

Example: first attempt

- Generate a sample of B->mumu events
- Number of interaction lenghts setted using
 - PmcMicroAdapter::buildIfrQual to compute the parameterized output and store the BtalfrQul quantities
 - PmcMicroAdapter use as Input a BtaCandidate

4 3 2 1 0 0.5 1.5 2 2.5 1 theta 31 May 2008

- We do not need a BtaCandidate
 - A PacSimTrk could be enough, a link to the detector responses should be provided
- Move/rewrite the buildIfrQual method in a dedicated package to simulate the response of the detector.

measure Int Lenght

To Do

- Move to the new PravdaMC ASAP
- Implement a simple cut based selector and create muonLists usable for physics
- Adjust the PDFs according to the CDR baseline (or other design)
 - for examples: changes in the #layers, or in the #interaction lenghts
- Coordinate with the EMC:
 - Ecal is used by mu selectors
 - Take into account correlations between the energy release in the
- Question: how Klong fit with the PravdaMC/PacTrk design?
 - We need to generate a BtaCandidate from hits in the IFR