Tracking Fast Simulation

David Brown, LBNL

SuperB meeting 2 June 2008 Elba, Italy

FastSim History

- Old (BaBar PravdaMC)
 - True particle 4-vectors are smeared to directly produce analysis objects (BtaCandidates)
 - Additional properties (PID) are simulated via adhoc functions
 - No energy loss, interaction, inefficiency, pat. rec. confusion, decay, no track smear @ dirc, ...
 - Difficult to understand, maintain or extend
- New (PACRAT + revised PravdaMC)
 - Algorithm described in the rest of this talk
 - First code stored in superB subversion repository

SuperB Fast Sim Goals

Physics Reach studies

- Processes dominated by core resolution
- Processes with physics-dominated backgrounds
- Change in reach for different detector options
- Detector Optimization
 - Tracking configuration
 - Resolution requirements from physics benchmarks
- Framework to mix in full sim results
 - Background sensitivity studies
 - Outer detector optimization?

Fast Simulation Process

- Generation of primary particles (EvtGen)
- Simulation of particle interaction with the detector material (active + passive)
 - scattering, energy loss, interaction, ...
 - equivalent to the job of G4
- Simulation of the detector response to the particle passage through active material
 - Turn energy deposition into 'reconstructed' quantity
 - equivalent to BBSim in BaBar
- Assemble analysis objects

Fast Sim Data Flow

Detector Representation

- Detector divided into simple 'elements'
 - Cylinders for tracking layers, beampipe, ...
- Thickness modeled 'locally'
 - not true volumes
- Details handled statistically
 - Si overlaps, Dch wires
- Material properties from G4 database
 - Elements and Composites
- Geometry and other params from ascii file

Material Simulation

- Model particle through each Detector element
- Charged particles Scattering and energy-loss
 - Gaussian or Moliere scattering
 - Landau energy loss
 - Cumulative effects for outer detector
- Interaction probability given X₀, N_{interaction}
 - EM and/or Hadronic showers as appropriate
- Gamma Conversion
- Bremsstralung
- Decay

Tracking Response Simulation

- Hits are generated at each active layer
 - Can model Si strips, pixels, axial and stereo wires
 - Only active region generates hits (acceptance)
- Hit efficiency modeled as random loss
- True position is smeared by resolution function
 - Gaussian or non-Gaussian function
- Hit confusion can be modeled by proximity
 - Randomly pick true hit or other hit nearby
 - Proximity defined by 2-hit resolution, track resolution
 - Model confusion from background hits too

David Brown, LBNL

Track Reconstruction

- Use BaBar track hit class to store hits
 - Describes a line trajectory in space
 - Describes RMS resolution value, provided by hit
- Use BaBar DetectorModel to describe geometry and material
 - Describes elements as 2-D shapes
 - Same objects used in Detector simulation!
- Use BaBar Kalman fit to reconstruct tracks
 - Hits assigned by simulation (no Pat. Rec.)
 - Provides track parameters, covariance at origin

Detector Configuration

- Controlled by an ascii file
 - 'arrays' describing Detector Elements material, geometry, and measurement properties
 - Read by Detector Model constructor
 - Configurable but clumsy
- Current BaBar Detector configuration
 - 5 layers Si
 - ϕ : 10µm resolution, 96% efficiency, z: 20µm resolution, 94% efficiency
 - 40 layers Dch with 6° stereo, 180µm resolution
 - Passive components (beampipe, ...)
- Will provide SuperB prototype description

Current Performance

- BaBar detector configuration (including dirc)
- $\Upsilon \rightarrow B\overline{B}, B \rightarrow \pi^{+}\pi^{-}$
- 2GHz Opteron dual core SL4
- Sim ~1 ms/event, track fit ~5 ms/event
- EvtGen ~11 ms/event, total ~25 ms/event

AppAST:	0.00	10000 l	15.16 I	1.51600 0.00 IBtaMicroPidKilling
AppAST:	0.00 l	10000 l	21.72	2.17200 I 0.00 IBtuTupleMaker
AppAST:	0.00 l	10000 l	15.48 I	1.54800 I 0.00 IRacTestInput
AppAST:	0.00	10000 l	51.881	5.18800 0.00 IPmcReconstruct
AppAST:	0.00 l	10000 l	9.811	0.98100 I 0.00 IPmcSimulate
AppAST:	0.00	10000 l	107.89	10.78900 0.00 GfiEviGen

Ш

David Brown, LBNL

Tracking Results

Produced with standard BaBar tracking diagnostic code

B→π+π- Results

Development Priorities

- Implement plane, cone geometries
- Svt testbeam configuration
- Clean package dependencies, split sequences (G. Simi, M. Rama)
- Hit confusion
- Dch wire material simulation
- Realistic scattering and resolution functions
- Visualization (detector and tracks)
- MC truth matching
- Migrate code from BaBar to SuperB
- SuperB prototype configuration

Configuration Upgrade

- Plan to replace current format with 'GDML'-like xml language
 - Use GDML to describe geometry and material
 - Add extensions to describe sensor segmentation, response functions
 - Used to compute hit confusion, resolution, efficiency
- Derive FastSim from FullSim description?
 - requires code to compress complexity
- Copy or learn from ILC implementation?

Conclusions

- A major upgrade of BaBar fastsim has been started
- Tracking code is implemented, being tested and extended
- Outer detector code is under development
- Capabilities and performance of upgraded fastsim should meet SuperB TDR needs
- A 'beta' public release using the SuperB subversion repository should be ready this summer