SuperB EMC R&D Introduction

David Hitlin Elba Super*B* Meeting May 31, 2008

David Hitlin

Elba SuperB Meeting May 31, 2008

EMC R&D for SuperB

> There are two EMC R&D sessions this morning

- > Introduction Hitlin
- Status of determination of LYSO mechanical properties Cecchi
- Forward endcap geometry Germani
- An alternative forward endcap geometry Porter
- Rear endcap Pb/Tile calorimeter endcap Eigen
- Discussion

> Goals

Decide, if possible, on a forward endcap geometry

Make progress on rear endcap design

Elba SuperB Meeting Ma

EMC R&D for SuperB

- > With the likely time structure of Super B, backgrounds and radiation damage to the EMC should be reduced from those at a 10³⁶ conventional collider > In the barrel region, rates and radiation dose should be tolerable > The barrel EMC should be usable at SuperB > In the endcap region, at least, there will be multi-Bhabhas within the decay/integration time of the CsI(Tl) as well as showers from off-energy electrons that (hopefully) hit the inner shielding > The forward CsI(Tl) endcap crystals must be replaced with crystals having a faster scintillation light decay time that are more radiation hard > There are good physics motivations to increase solid angle coverage with a rear endcap used primarily as a veto
 - Lead/scintillator technology should suffice

Participating institutions (to date):

Bergen, Caltech, Edinburgh, McGill, Perugia, QMC (U of London)

Elba SuperB Meeting

EMC R&D for SuperB

Forward endcap

> We need

> A crystal with a smaller Molière radius

> A crystal that is more radiation hard

> A crystal with a faster decay time

> Why not, you ask, use PbWO₄?

Because we need a crystal that produces more light than a lead brick
 We have an excellent candidate in LYSO, which is under development by Ren-Yuan Zhu at Caltech

Elba SuperB Meeting May 3

Forward endcap layout

CDR Layout

The CDR segmentation algorithm needs to be optimized: Smaller crystals at smaller radii Enforce boule yield constraints

Elba SuperB Meeting May 31

May 31, 2008

Candidate endcap crystal geometry

Constraint: a 60mm diameter SIPAT boule must yield two crystals

Xtals Dimensions: Back <2.5 cm

INFN

Elba SuperB Meeting May 31, 2008

LSO/LYSO is in mass production

CTI: LSO

CPI: LYSO

Saint-Gobain LYSO

David Hitlin

Elba SuperB Meeting May 3

May 31, 2008

Cerium Segregation in LSO

Ce is not easy to enter LSO lattice. It may be important to make it uniform.

Presented in SuperB EMC R&D Meetring, February 14, 2008, by Ren-yuan Zhu, Caltech

Correlation: Ce and EWLT/L.O./Phors.

Presented in SuperB EMC R&D Meetring, February 14, 2008, by Ren-yuan Zhu, Caltech

Rear endcap tile pattern concept (Eigen)

- > Pb plates with tile/fiber SiPM readout
- Is projective geometry needed?
- Since tiles are read out individually, there are a large number of channels even in a small device
 - > Can channels be analog-summed?

Sichuan Institute of Piezoelectric and Acousto-optic Technology (SIPAT)

David Hitlin

Elba SuperB Meeting

May 31, 2008

LYSO crystal R&D

- Crystals are expensive (\$50/cc) at present, but we believe that the price can be brought down to ~\$15/cc
- More work remains to be done on improving the crystal growth process
 - > Characterize trace impurities improve radiation hardness
 - Improve uniformity of cerium and yttrium doping in the Czochralski process
 - > Optimize crystal yield of a given size in a particular boule diameter
 - Reduce phosphorescence

>

> Further develop new supplier relationship

5x5 Projective LYSO array with CsI(Tl) surround

16 spare *BABAR* CsI(TI) crystals may be available

A 7x7 array is best, but it can be approximated by a 5x5 array surrounded by CsI(Tl) to catch the outer few percent of shower

CMS APD readout module 2 @ 5mmx5mm APD (10x10mm APDs are now available)

David Hitlin

Elba SuperB Meeting

May 31, 2008

Beam test budget estimate (M&S)

Item	Unit cost (\$)	Cost (K\$)
LYSO Crystal @ \$50/cc (for the test only) x24	6250	150
CMS type dual APD module 2 x Hamamatsu S6664-55 (x(24+16))	250	10
Preamplifier/Shaper (x24+16)	200	8
DAQ system		10
Source carriage		2
Beam test mounting structure		20
Total M&S (w 25% contingency)		250

Elba SuperB Meeting

Monte Carlo studies

- The Perugia group is developing a GEANT4 simulation to optimize the crystal dimensions, the wrapping, the mounting structure, etc.
 - Initial studies have been presented
 - > Optimization is underway

Stefano Germani

16

David Hitlin

Elba SuperB Meeting

May 31, 2008

Dead Material comparison BABAR-like geometry CMS-like geometry (B.Aubert et al. Nucl.Instrum.Meth.A479:1-116,2002) (CMS EDR IV) -Each Crystal wrapped with -Crystal inside Carbon Fiber matrix • 2 x 165 µm Tyvek -Inner wall thickness 400 µm • 25 µm Al –Outer wall thickness 300 µm •13 µm Mylar -Crystal Carbon fiber clearance 100 µm -Each module wrapped with -Module Gap 100 µm •300 µm Carbon fiber Air Tyvek Crystal Crystal 3x3 Module **Carbon Fiber** Ai r Stefano Germani

David Hitlin

Elba SuperB Meeting

May 31, 2008

Rear endcap layout+real barrel extension

David Hitlin

Elba SuperB Meeting

May 31, 2008

Conclusions

- We have organized the nucleus of a group to do the R&D needed for the SuperB TDR: to design (and eventually) build an upgraded EMC for SuperB
- We have focused initial effort around a LYSO beam test of a projective array of size adequate to understand in detail shower response and containment
- > Very little effort thus far on the rear endcap calorimeter
- There are EMC R&D meetings approximately every two weeks on Wednesday at 8:30AM PST/5:30PM ECT
- There are a lot of interesting issues still to be addressed, and lots of opportunities to contribute
- > More details will be presented in the parallel sessions

Elba SuperB Meeting May 31, 2008

Scintillating Crystals for HEP

Crystal	NaI(TI)	CsI(Tl)	CsI	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.2	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	Νο	Νο	Νο	Νο	Νο
Luminescence ^b (nm) (at peak)	410	560	420 310	300 220	480	560 420	420	440
Decay Time ^b (ns)	230	1300	35 6	630 0.9	300	50 10	42	60
Light Yield ^{b,c} (%)	100	45	5.6 2.3	21 2.7	13	0.1 0.6	75	30
d(LY)/dT ^b (%/ °C)	~0	0.3	-0.6	-2 ~0	-1.6	-1.9	-0.3	-0.1
Experiment	Crystal Ball	CLEO BABAR Belle BES III	KTeV, E787	TAPS (L*) (GEM)	L3 BELLE PANDA?	CMS ALICE PANDA? (BTeV)	Super <i>B</i> ?	-

Elba SuperB Meeting M

May 31, 2008

Photo-Luminescence-weighted Q.E.

David Hitlin

Elba SuperB Meeting

May 31, 2008

Edep mean and mpv

Edep mean :

Fit independent

Most Probable Value:

Fit Function parameter P₁

Edep vs Projectivity

Rear endcap acceptance studies

- Many of the main physics objectives of SuperB involve missing energy signatures
 - Use of the recoil technique
 - Excellent reconstruction efficiency for hadronic B decays, especially those involving D*s
 - Excellent particle ID
 Hermeticity

> Improving backward calorimeter coverage can pay large dividends in signal/background
 > Study using B→τν benchmark

Backward polar angle coverage (radians)

David Hitlin

Elba SuperB Meeting

May 31, 2008

24

M. Mazur