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The Flavour Problem

• SM has 20 (22) low energy flavour parameters (out of 25(27))

• They show tantalising structure, eg.

d s b

|VCKM | ∼
u

c

t




O(1) O(λ) O(λ3)

O(λ) O(1) O(λ2)

O(λ3) O(λ2) O(1)




ν1 ν2 ν3

|UMNS | ∼
e

µ

τ




2/
√

6 1/
√

3 <∼ 0.2

1/
√

6 1/
√

3 1/
√

2

1/
√

6 1/
√

3 1/
√

2




q    i
q     
 α

W+

i αV

l- i
ν   
 α

W-

i αU

• Are not predictable in the SM - profoundly unsatisfactory.
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Masses and Mixings have Common Origin

• in Quark and Lepton mass matrices: M 2

3

, M− 1

3

, Mℓ, Mν

• Each is product of Higgs vev and Yukawa coupling matrix in Lagrangian
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• in Quark and Lepton mass matrices: M 2

3
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• Each is product of Higgs vev and Yukawa coupling matrix in Lagrangian

• Will work with their Hermitian Squares.

– eg. for neutrinos: N = MνM
†
ν

– for charged leptons: L = MℓM
†
ℓ

– for charged 2/3 quarks: H 2

3

= M 2

3

M †
2

3

etc.

• Diagonalise UνNU †
ν = Dν → eigenvalues (ie. masses-squared)

• Diagonalisation different for L and N ⇒ mixing, ie. UMNS ≡ UℓU
†
ν .

Analogous for quarks: UCKM ≡ U− 1

3

U †
2

3

.
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The Jarlskogian and Plaquette Invariance

Jarlskog’s CP -violating invariant:

J = Im(UαiU
∗
αjU

∗
βiUβj)




Ue1 U∗
e2 Ue3

U∗
µ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



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The Jarlskogian and Plaquette Invariance

Jarlskog’s CP -violating invariant:

J = Im(UαiU
∗
αjU

∗
βiUβj)




Ue1 U∗
e2 Ue3

U∗
µ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




Fascinating properties:

• Parameterises CP violation

• Does not depend on which plaquette is used

• Simply related to the mass matrices:

J = −i
Det[L, N ]

2L∆N∆

L∆, N∆ are traces of polynomials in L and N .
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Are there Other Plaquette Invariants?

Paul Harrison University of Warwick 1st June 2008



6

Are there Other Plaquette Invariants?

Yes!

Paul Harrison University of Warwick 1st June 2008



6

Are there Other Plaquette Invariants?

Yes!

• J samples information uniformly across U

- it is flavour − symmetric (FS).

Paul Harrison University of Warwick 1st June 2008



6

Are there Other Plaquette Invariants?

Yes!

• J samples information uniformly across U

- it is flavour − symmetric (FS).

• Clearly, any function of the Uαi, symmetrised over all flavour labels,

and reduced to a function of only elements of a single plaquette

is plaquette-invariant.

Paul Harrison University of Warwick 1st June 2008



6

Are there Other Plaquette Invariants?

Yes!

• J samples information uniformly across U

- it is flavour − symmetric (FS).

• Clearly, any function of the Uαi, symmetrised over all flavour labels,

and reduced to a function of only elements of a single plaquette

is plaquette-invariant.

• Working with observables, find that, like J , FS functions of the mixing matrix can

always be expressed as simple functions of the mass matrices.

• Will introduce an elemental set

– can be used for the flavour-symmetric description of any mixing scheme.
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The S3ℓ × S3ν Flavour Permutation Group

• 6 perms. of ℓ flavour indices and 6 of ν “flavour” labels (ie. ν mass eigenstate

indices) constitute the S3ℓ × S3ν Flavour Permutation Group (FPG).
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indices) constitute the S3ℓ × S3ν Flavour Permutation Group (FPG).

• Introduce the observable P matrix:

P =


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|Ue1|2 |Ue2|2 |Ue3|2

|Uµ1|2 |Uµ2|2 |Uµ3|2

|Uτ1|2 |Uτ2|2 |Uτ3|2


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– Parameterises mixing (up to the sign of J).

– Transforms as a (reducible) 3 × 3 (natural representation) of FPG.

– Rows and columns each sum to unity (a magic square)

⇒ completely specified by elements of any P -plaquette.

– Each P -plaquette transforms as (irreducible) 2 × 2 of FPG.
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Singlets Under FPG?

• J is prototype FS observable - invariant under even members of the FPG;

flips sign under odd members; ie. 1 × 1.
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Singlets Under FPG?

• J is prototype FS observable - invariant under even members of the FPG;

flips sign under odd members; ie. 1 × 1.

• Search for other singlets: 1 × 1, 1 × 1 etc.

– Find simple polynomials of elements of P

– (anti-)symmetrise over flavour labels

• Simple representation theory→

– 1st order in P : ∃ no non-trivial singlets

– 2nd order: one each of 1 × 1 and 1 × 1

– 3rd order: one each of all four singlets

– ≥ 4th order: multiple instances of each

• Will stay at ≤ 3rd order. Clearly four are sufficient.
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Elemental Set of FS Mixing Observables

Define themselves, up to normalisation (and “offset” in 1 × 1 case):

G =
1

2
[
∑

αi

(Pαi)
2 − 1 ] F = DetP

C =
3

2
[
∑

αi

(Pαi)
3 −

∑

αi

(Pαi)
2 ] + 1 A =

1

18

∑

γk

(Lγk)
3

where Lγk = (Pαi + Pβj − Pβi − Pαj).
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Elemental Set of FS Mixing Observables

Define themselves, up to normalisation (and “offset” in 1 × 1 case):

G =
1

2
[
∑

αi

(Pαi)
2 − 1 ] F = DetP

C =
3

2
[
∑

αi

(Pαi)
3 −

∑

αi

(Pαi)
2 ] + 1 A =

1

18

∑

γk

(Lγk)
3

where Lγk = (Pαi + Pβj − Pβi − Pαj).

• F and A need no offset (they are anti-symmetric).

– Reach extremum for no mixing

– 0 for trimaximal mixing

• All normalised to maximum value = 1 (no mixing).

• G and C offset to zero for maximal mixing
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Properties and Values

Observable Order Symmetry: Theor. Exptl. Range Exptl. Range

Name in P S3ℓ × S3ν Range for Leptons for Quarks

F 2 1×1 (−1, 1) (−0.14, 0.12) (0.893, 0.896)

G 2 1×1 (0, 1) (0.15, 0.23) (0.898, 0.901)

A 3 1×1 (−1, 1) (−0.065, 0.052) (0.848, 0.852)

C 3 1×1 (− 1
27 , 1) (−0.005, 0.057) (0.848, 0.852)

Properties and values of FS observables. Experimentally allowed ranges estimated

(90% CL) from compilations of current experimental results (neglect any correlations

between the input quantities).
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FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: L̃m := Lm − 1
3
Tr(Lm)

(similarly for Ñm).

Now define Jarlskog-invariant:

T̃mn := Tr(L̃mÑn), m, n = 1, 2.

T̃ Completely equivalent to P (for known lepton masses).
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Define reduced (ie. traceless) powers of mass matrices: L̃m := Lm − 1
3
Tr(Lm)

(similarly for Ñm).

Now define Jarlskog-invariant:

T̃mn := Tr(L̃mÑn), m, n = 1, 2.

T̃ Completely equivalent to P (for known lepton masses).

Find:

F ≡ Det P = 3
Det T̃

L∆N∆

;

[
cf. J = −i

Det[L, N ]

2L∆N∆

]
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FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: L̃m := Lm − 1
3
Tr(Lm)

(similarly for Ñm).

Now define Jarlskog-invariant:

T̃mn := Tr(L̃mÑn), m, n = 1, 2.

T̃ Completely equivalent to P (for known lepton masses).

Find:

F ≡ Det P = 3
Det T̃

L∆N∆

;

[
cf. J = −i

Det[L, N ]

2L∆N∆

]

G =
T̃mn T̃pq Lmp N nq

(L∆N∆)2
; C,A =

T̃mn T̃pq T̃rs L(mpr)
C,A N (nqs)

C,A

(L∆N∆)nC,A

The L (N ) are simple functions of traces of L̃m (Ñm). nC (nA) = 2(3).
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Application: Flavour-symmetric Descriptions of Mixing

Solar
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⇒ F = 0, C = 0, A = 0, G = 1
6
(1 − 3ǫ2)2. Where is flavour-symmetry?
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Where is Flavour Symmetry?

• It is spontaneously broken
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Where is Flavour Symmetry?

• It is spontaneously broken

• There exist 36 equally valid “solutions” of the TBM form, related to each other by

allowed permutations of the rows and columns of the mixing matrix.

• eg.
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Another Application:

Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.
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Another Application:

Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.

What feature do quark and lepton mixing matrices have in common?

• Each has at least one “small” ele-

ment.

• What is the flavour-symmetric ex-

pression of this?
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Another Application:

Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.

What feature do quark and lepton mixing matrices have in common?

• Each has at least one “small” ele-
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≥ 1 zero ⇒ CP-conservation =⇒ J = 0. But need two constraints.
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FS Condition for One Mixing Zero

After some work, find

=⇒ 2A + F(F2 − 2C − 1) = 0 and J = 0

• Manifestly FS, but not “neat”
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FS Condition for One Mixing Zero

After some work, find

=⇒ 2A + F(F2 − 2C − 1) = 0 and J = 0

• Manifestly FS, but not “neat”

• Now, consider K-matrix: Kγk = Re(UαiU
∗
αjU

∗
βiUβj) (cf. J).

• Familiar from CP conserving parts of interference terms in penguin dominated

rates

• In fact 2A + F(F2 − 2C − 1) ≡ 54 DetK

So

Det K = 0 and J = 0

is condition we want
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FS Condition for One Small Element

• For one small element, relax (slightly) one condition or both.

• For quark mixing, know that J 6= 0 (but small)
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FS Condition for One Small Element

• For one small element, relax (slightly) one condition or both.

• For quark mixing, know that J 6= 0 (but small)

• How about DetK?

|DetKq/(DetK)max|<∼ 3 × 10−7

• Leptons also consistent with Det K small or zero.
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FS Condition for One Small Element

• For one small element, relax (slightly) one condition or both.

• For quark mixing, know that J 6= 0 (but small)

• How about DetK?

|DetKq/(DetK)max|<∼ 3 × 10−7

• Leptons also consistent with Det K small or zero.

• Conjecture: MNS and CKM constrained according to the same FS condition:

DetK = 0; J small.

Unified, partial description of quark and lepton mixings.
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Predictions

• DetK = 0; J small =⇒ as J → 0, at least one UT angle → 90◦.

• Get precise prediction for one unitarity angle in terms of other mixing elements.

• Doesn’t tell us which angle, but the data do.
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• For quarks, predict:
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Predictions

• DetK = 0; J small =⇒ as J → 0, at least one UT angle → 90◦.

• Get precise prediction for one unitarity angle in terms of other mixing elements.

• Doesn’t tell us which angle, but the data do.

• For quarks, predict:

− cos α ≃ (90◦ − α) = ηλ2 = 1◦ ± 0.2◦ .

. cf. (90◦ − α) = 0◦+3◦

−7◦ experimentally.

• “A sub-1◦ measurement is possible in B → ρρ and B → ππ individually”

(A. Bevan 5th SuperB workshop, Paris, 2007).

• For leptons, predict:

| cos δ| ≃ |90◦ − δ| = 2
√

2 sin θ13 sin (θ23 −
π

4
) <∼ 4◦
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Summary

• Have defined flavour-symmetric mass and/or mixing observables.

• “Simplest” set defines itself up to normalisation

• Remarkably, leptonic mixing is consistent with 3 of these = 0!

• Used them to implement FS constraints on flavour observables, and make testable

conjectures

• αCKM should be (89 ± 0.2)◦ - UT is almost right!

• δleptons should be within 4◦ of 90◦.
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