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e SM has 20 (22) low energy flavour parameters (out of 25(27))

e They show tantalising structure, eg.

\Veram| ~ ¢

e
\Unins| ~ 1

T

e Are not predictable in the SM - profoundly unsatisfactory.
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‘ Masses and Mixings have Common Originl

e in Quark and Lepton mass matrices: Mg, M_%, M,, M,

e Each is product of Higgs vev and Yukawa coupling matrix in Lagrangian
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‘ Masses and Mixings have Common Originl

e in Quark and Lepton mass matrices: M%, M_%, M,, M,
e Each is product of Higgs vev and Yukawa coupling matrix in Lagrangian

e Will work with their Hermitian Squares.

— eg. for neutrinos: N = M, M

— for charged leptons: L = M, M

— for charged 2/3 quarks: Hy = M;M% etc.
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‘ Masses and Mixings have Common Originl

e in Quark and Lepton mass matrices: Mg, M_%, M,, M,
e Each is product of Higgs vev and Yukawa coupling matrix in Lagrangian

e Will work with their Hermitian Squares.

— eg. for neutrinos: N = M, M

— for charged leptons: L = M, M

— for charged 2/3 quarks: Hy = M;M% etc.

e Diagonalise U,NU} = D, — eigenvalues (ie. masses-squared)

e Diagonalisation different for L and N = mixing, ie. Upns = U,UJ.

Analogous for quarks: Ucgyr = U_%U;
3
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‘ The Jarlskogian and Plaquette Invariancel

Jarlskog's C'P-violating invariant:
(Uel :2 UeS\
J = Im(UmU;jU;iUgj) ;1 Up U3
K(T/TTl LT/TT2 {TT?))
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‘ The Jarlskogian and Plaquette Invariancel

Jarlskog's C'P-violating invariant:

J = IHI(UaiU;jU;iUgj)

Fascinating properties:
e Parameterises C'P violation

e Does not depend on which plaquette is used
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‘ The Jarlskogian and Plaquette Invariancel

Jarlskog's C'P-violating invariant:
(Uel :2 UeS\
J = Im(UmU;jUgiUgj) ;1 Up U3
\(T/TTl LT/TT2 {T'r?))

Fascinating properties:
e Parameterises C'P violation
e Does not depend on which plaquette is used

e Simply related to the mass matrices:

Det[L, N
j — —; DetlL. ]
2LANA

LA, Na are traces of polynomials in L and V.
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‘ Are there Other Plaquette Invariants?l
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‘ Are there Other Plaquette Invariants?l

Yes!

e J samples information uniformly across U

- it is flavour — symmetric (FS).

e Clearly, any function of the U,;, symmetrised over all flavour labels,
and reduced to a function of only elements of a single plaquette

is plaquette-invariant.

e Working with observables, find that, like J, FS functions of the mixing matrix can

always be expressed as simple functions of the mass matrices.

e Will introduce an elemental set

— can be used for the flavour-symmetric description of any mixing scheme.
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‘ The S3, X S3, Flavour Permutation GroupI

e 6 perms. of ¢ flavour indices and 6 of v “flavour” labels (ie. v mass eigenstate

indices) constitute the S3, x 53, Flavour Permutation Group (FPG).
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‘ The S3, X S3, Flavour Permutation GroupI

e 6 perms. of ¢ flavour indices and 6 of v “flavour” labels (ie. v mass eigenstate

indices) constitute the S3, x 53, Flavour Permutation Group (FPG).

e Introduce the observable P matrix:

(
\

— Parameterises mixing (up to the sign of J).
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‘ The S3, X S3, Flavour Permutation GroupI

e 6 perms. of ¢ flavour indices and 6 of v “flavour” labels (ie. v mass eigenstate

indices) constitute the S3, x 53, Flavour Permutation Group (FPG).

e Introduce the observable P matrix:

— Parameterises mixing (up to the sign of J).
— Transforms as a (reducible) 3 x 3 (natural representation) of FPG.

— Rows and columns each sum to unity (a magic square)

= completely specified by elements of any P-plaquette.

— Each P-plaquette transforms as (irreducible) 2 x 2 of FPG.
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‘ Singlets Under FPG?I

e J is prototype FS observable - invariant under even members of the FPG;

flips sign under odd members; ie. 1 x 1.
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‘ Singlets Under FPG?I

e J is prototype FS observable - invariant under even members of the FPG;
flips sign under odd members; ie. 1 x 1.

e Search for other singlets: 1 x 1, 1 x 1 etc.

— Find simple polynomials of elements of P

— (anti-)symmetrise over flavour labels

e Simple representation theory—

— 1st order in P: 4 no non-trivial singlets

— 2nd order: oneeachof 1 x 1 and 1 x 1
— 3rd order: one each of all four singlets
— > 4th order: multiple instances of each

e Will stay at < 3rd order. Clearly four are sufficient.
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‘ Elemental Set of FS Mixing Observablesl

Define themselves, up to normalisation (and “offset”
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‘ Elemental Set of FS Mixing Observablesl

Define themselves, up to normalisation (and “offset” in 1 x 1 case):

G=-[> (Pu)—1] F = DetP

ot ot vk

where Lfyk = (Pai+P6j _Pﬂi_Paj)-

e F and A need no offset (they are anti-symmetric).

P=10
— Reach extremum for no mixing /

— 0 for trimaximal mixing

e All normalised to maximum value =1 (no mixirkA

-
-

e G and C offset to zero for maximal mixing P =

Wi W= Wi

ol
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‘ Properties and VaIuesI

10

Observable | Order | Symmetry: | Theor. Exptl. Range Exptl. Range
Name in P | S3, xS53, Range for Leptons for Quarks

F 2 1x1 (—1,1) (—0.14,0.12) | (0.893,0.896)

g 2 1x1 (0,1) (0.15,0.23) (0.898,0.901)

A 3 1x1 (—1,1) | (—0.065,0.052) | (0.848,0.852)

C 3 1x1 (—35,1) | (—0.005,0.057) | (0.848,0.852)

Properties and values of FS observables. Experimentally allowed ranges estimated

(90% CL) from compilations of current experimental results (neglect any correlations

between the input quantities).
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| FSMOs in Terms of Mass Matricesl

Define reduced (ie. traceless) powers of mass matrices: L= L™ — sTr(L™)
(similarly for N™).
Now define Jarlskog-invariant:

~

Trn = Tr(ﬁl]/\f\%), m,n =1,2.

T Completely equivalent to P (for known lepton masses).
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| FSMOs in Terms of Mass Matricesl

Define reduced (ie. traceless) powers of mass matrices: L= L™ — sTr(L™)
(similarly for N™).
Now define Jarlskog-invariant:

~

Trn = Tr(ﬁ”b]/\f\%), m,n =1,2.

T Completely equivalent to P (for known lepton masses).

Find:
Det T Det|[L, N|

Det P = 3 J = —i
F=De LANA cf 2LANA
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| FSMOs in Terms of Mass Matricesl

Define reduced (ie. traceless) powers of mass matrices: L= L™ — sTr(L™)
(similarly for N™).
Now define Jarlskog-invariant:

~

Trm == Tr(ﬁ@]/\fv”), m,n =1, 2.

T Completely equivalent to P (for known lepton masses).

Find:
Det T Det[L, N]
© LANA cf "TOLANA
o= DunTp LN T T T £ NS
(LANA)2 7 ’ (LANA)”’C A

The £ (N) are simple functions of traces of Lm (W) ne (n4) = 2(3).
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Application: Flavour-symmetric Descriptions of Mixing

A
o
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‘ Where is Flavour Symmetry?l

e |t is spontaneously broken
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‘ Where is Flavour Symmetry?l

e |t is spontaneously broken
e There exist 36 equally valid “solutions” of the TBM form, related to each other by

allowed permutations of the rows and columns of the mixing matrix.

® eg.

4 Vo V3

e (13 26 e )
Ul~p | 13 1/V6 1/v2
T\ V3 1VE 12

Paul Harrison University of Warwick 1st June 2008



14

‘ Another Application: I

Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.
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‘ Another Application: I

Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.

What feature do quark and lepton mixing matrices have in common?

[ o1 ~n )

e Each has at least one “small’ ele- Vexm| ~ ~ A ~ 1 ~ \?
ment. \ ~ A\ ~ \? ~ 1 )

e What is the flavour-symmetric ex-

[2/v6 1V e )
Unmns|~ | 1/v/6  1/v/3  1//2
\ 1/v/6  1/v/3  1/V2 )

pression of this?
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‘ Another Application: I

Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.

What feature do quark and lepton mixing matrices have in common?

[ o1 ~n )

e Each has at least one “small’ ele- Vexm| ~ ~ A ~ 1 ~ \?
ment. \ ~ A\ ~ \? ~ 1 )

e What is the flavour-symmetric ex-

[ 2V 1/v/3 e )
Unmns|~ | 1/v/6  1/v/3  1//2
\ 1/V6  1/V3 O 1/V2

> 1 zero = CP-conservation —> J = 0. But need two constraints.

pression of this?
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‘ FS Condition for One Mixing ZeroI

After some work, find

— 2A+ F(F*—2C—1)=0and J =0

e Manifestly FS, but not “neat”
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‘ FS Condition for One Mixing ZeroI

After some work, find

— 2A+F(F*—2C—1)=0and J=0

e Manifestly FS, but not “neat”
e Now, consider K-matrix: K., = Re(U,:U;,;U5Us;) (cf. J).
e Familiar from C' P conserving parts of interference terms in penguin dominated

rates
o Infact 24+ F(F*—2C — 1) =54 Det K

So
Det K =0and J =0

Is condition we want
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| FS Condition for One Small EIementI

e For one small element, relax (slightly) one condition or both.

e For quark mixing, know that J # 0 (but small)
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| FS Condition for One Small EIementI

e For one small element, relax (slightly) one condition or both.
e For quark mixing, know that J # 0 (but small)

e How about DetK7?

Det K, /(Det K ) pae| S3 x 1077

e Leptons also consistent with Det K small or zero.
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| FS Condition for One Small EIementI

e For one small element, relax (slightly) one condition or both.
e For quark mixing, know that J # 0 (but small)

e How about DetK7?

Det K, /(Det K ) pae| S3 x 1077

e Leptons also consistent with Det K small or zero.

e Conjecture: MNS and CKM constrained according to the same FS condition:

DetK =0; J small.

Unified, partial description of quark and lepton mixings.
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| Predictionsl

e DetK =0;J small = as J — 0, at least one UT angle — 90°.
e Get precise prediction for one unitarity angle in terms of other mixing elements.

e Doesn't tell us which angle, but the data do.
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| Predictionsl

e DetK =0;J small = as J — 0, at least one UT angle — 90°.
e Get precise prediction for one unitarity angle in terms of other mixing elements.
e Doesn't tell us which angle, but the data do.

e For quarks, predict:

—cosa ~ (90° — a) =gA* = 1° £ 0.2°

cf. (90° — a) = 0°F2, experimentally.

e “A sub-1° measurement is possible in B — pp and B — 7 individually”

(A. Bevan 5th SuperB workshop, Paris, 2007).

e For leptons, predict:

| cos 0] ~ |90° — 6] = 2V/2 sin f;5 sin (Hyg — %)540
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‘ Summaryl

e Have defined flavour-symmetric mass and/or mixing observables.

Paul Harrison University of Warwick 1st June 2008



18

‘ Summaryl

e Have defined flavour-symmetric mass and/or mixing observables.

e “Simplest” set defines itself up to normalisation

Paul Harrison University of Warwick 1st June 2008



18

‘ Summaryl

e Have defined flavour-symmetric mass and/or mixing observables.
e “Simplest” set defines itself up to normalisation

e Remarkably, leptonic mixing is consistent with 3 of these = 0!

Paul Harrison University of Warwick 1st June 2008



18

‘ Summaryl

e Have defined flavour-symmetric mass and/or mixing observables.
e “Simplest” set defines itself up to normalisation
e Remarkably, leptonic mixing is consistent with 3 of these = 0!

e Used them to implement FS constraints on flavour observables, and make testable

conjectures

Paul Harrison University of Warwick 1st June 2008



18

‘ Summaryl

e Have defined flavour-symmetric mass and/or mixing observables.
e “Simplest” set defines itself up to normalisation
e Remarkably, leptonic mixing is consistent with 3 of these = 0!

e Used them to implement FS constraints on flavour observables, and make testable

conjectures

e acr should be (89 +0.2)° - UT is almost right!

Paul Harrison University of Warwick 1st June 2008



18

‘ Summaryl

e Have defined flavour-symmetric mass and/or mixing observables.
e “Simplest” set defines itself up to normalisation
e Remarkably, leptonic mixing is consistent with 3 of these = 0!

e Used them to implement FS constraints on flavour observables, and make testable

conjectures
e acr should be (89 +0.2)° - UT is almost right!

® Oleptons Should be within 4° of 90°.
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