

SuperB WS, Elba 1-Jun-08

Scaling Super*B***/PEP-II**

	SuperB HER	PEP-II HER	Factor <i>HER</i>	SuperB LER	PEP-II LER	Factor <i>LER</i>
E (GeV)	7	9	0.78	4	3.1	1.29
<i>R</i> (m)	286	353	0.81	286	353	0.81
<β> (m)	5.5	14.5	0.37	5.5	10.1	0.53
α_p	3.8e-4	2.41e-3	0.16	3.2e-4	1.24e-3	0.26
$ u_s $	0.0141	0.048	0.29	0.0133	0.03	0.44
$\delta p/p_{\rm rms}$	5.6e-4	6.4e-4	0.88	7.9e-4	6.23e-4	1.27
ε_x (nmr)	1.6	50	0.03	2.8	28	0.1
$\varepsilon_y(\text{nmr})$	4e-3	1	0.004	7e-3	1	0.007
σ_l (cm)	0.5	1.2	0.42	0.5	1.1	0.45

Single-Bunch Instabilities

Instab- ility	Threshold	Super <i>B</i> HER/ PEP-II HER	PEP-II HER observe d	Super <i>B</i> LER/ PEP-II LER	PEP-II LER observ ed
			(mA)		(mA)
µwave	$\hat{I} = \frac{2\pi \eta (\frac{E}{e}) (\beta \delta p / p)^2}{\left \frac{Z_{\parallel}}{n}\right _{eff}}$	0.1	>18	0.54	>3
TMCI	$I_{b} = \frac{16\sqrt{\pi} \left(\frac{E}{e}\right) v_{s} \sigma_{l}}{3 \langle \operatorname{Im}(Z_{\perp}) \beta_{\perp} \rangle R}$	0.38	>18	0.66	>3

Super*B* will operate at 1.47 mA/bunch in both rings.

With modest improvements in ring impedance the single-bunch instabilities should be sufficiently controlled (but see S.N. Talk!)

U. Wienands, SLAC

Low-Emittance Specifics

- The small emittance affects IBS and Touschek life time
 - IBS not seen in PEP, Touschek lifetime seen in LER but not dominant
 - > scaling is not so easily done
 - Beam size ratios (x•y): 1% (HER), 2.5% (LER)
- We estimated IBS emittance growth & Touschek life time by simulation.
 - The IBS simulations use the same code as used for ILC DR studies (Wolski).
 - Touschek simulations done with $Da\Phi ne$ code

U. Wienands, SLAC-ASD SuperB WS, Elba 1-Jun-08 6

(➡Boscolo)

Space Charge Effects

- The small emittance can lead to the somewhat unusual manifestation of space-charge effects esp. in the LER.
 - $\propto 1/\varepsilon_x/\sigma_l \text{ in } x \ (\approx 20), \ \sqrt{\beta_y}/(\sqrt{\beta_x} \cdot \sqrt{\varepsilon_x} \cdot \sqrt{\varepsilon_y} \cdot \sigma_l) \text{ in } y \ (\approx 100)$
- Tune shifts estimated to reach -0.18 in y
 - emittance growth depending on tune space
- Effect studied in detail for ILC DR designs
 - SuperB LER studied with the same code.

Summary Single Bunch

- Microwave & TMCI thresholds appear to be manageable.
 - Esp. if we keep the impedance lower than at PEP
- Touschek beam lifetime is short in the LER.
 - -20...25 min with the new lattice parameters
 - Trickle charge an integral part of Super*B* design
 - Touschek background will have to be dealt with
- IBS appears to be a potentially serious challenge for maintaining beam emittance.
 - predicted growth up to 50% in y, 100% in x (CDR latt.)
 - likely much less with new lattice parameters

Multibunch Instability

- Both PEP-II rings exhibit strong low-mode transverse multibunch instability.
 - Thresholds are 100 mA or less total beam current
 - Growth rates of up to 2/ms have been observed in the LER, somewhat less in the HER.
 - Modal spectrum suggests resistive wall.
- One cause is likely the stainless steel chambers in the straight sections
 - also some hints of resonant enhancement of growth rates in the LER in y
- Transverse bunch-by-bunch feedbacks control this
 - damping rates as strong as -8/ms (17 turns) observed

Ion Effects (HER)

- Ion trapping can occur in the strong beam potential of the Super*B* HER.
- Remedies known to be effective:
 - Ion-clearing gap in the beam
 - Low gas pressure in the vacuum system
 - Clearing electrodes
- In the PEP-II HER, ions have been clearly seen when vacuum conditions are bad
 - Despite clearing gap (1.4%) => likely a fast-ion (singleturn) effect
 - Characteristic multibunch instability spectrum
- Reducing gap too much also causes instability.

<u>PEP-II HER Ion Instability (DIP Storm)</u>

PR04 VDIP 6082 (a number of other DIPS do this as well)

- Feedback is *not* able to completely damp the beam motion
 - Growth rate at small amplitude is too high
 - Instability present even in collision with strong Landau damping from beam-beam (luminosity drop)
 - Multiple gaps in beam reduce this effect
- For SuperB, relative effect may be much larger because of the small beam size
- Will likely need better vacuum than in PEP-II
 - May need multiple gaps in the beam
 - May need clearing electrodes

Ions in SuperBHER

Electron Cloud Effect

- Electron-cloud instability (ECI) has been seen in both PEP-II and KEKB.
- Solenoids, antechambers, TiN coating effective to varying degree in reducing ECI
 - But residual effects most likely remain
- Again, the small beam size in Super*B* will likely cause it to be more sensitive that PEP-II or KEKB
- More powerful mitigation measures:
 - Reduce secondary emission with grooved chambers
 - Use clearing electrodes

Summary Multibunch

- Resistive wall instability unlikely to limit SuperB
 - SuperB vacuum chamber should have lower impedance, thus smaller growth rates
 - Landau damping due to beam-beam further helps
 - TFB is very effective against this instability
 - but noise impressed on beam could be problematic due to the small beam sizes
- Ions in the HER & electrons in the LER may be problematic
 - lower pressure feasible but at great effort
 - need for gaps in beam unattractive for upgrades
 - need to investigate need for clearing electrodes

