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Introduction

* SuperB = high-current, many bunches, small &
* To estimate instability thresholds, use B-Factories
as guidance
— Scale instability thresholds from PEP-II observations
— Expect some gain in threshold from lower impedance.

e Some effects significant in SuperB that were not
in PEP-II
— Intra-beam scattering (IBS) & Touschek life time
— Jon- and electron-induced instability (after mitigation)

— ILC DR work has investigated some of these in great
detail
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SuperB PEP-II Factor SuperB PEP-II Factor

HER HER HER LER LER LER
E (GeV) 7 9 0.78 4 3.1 1.29
R (m) 286 353 0.81 286 353 0.81
<> (m) 5.5 14.5 0.37 5.5 10.1 0.53
a, 3.8e-4 2.41e-3 0.16 3.2e-4 1.24e-3 0.26
Vv, 0.0141 0.048 0.29 0.0133 0.03 0.44
OP/Prins 5.6e-4 6.4e-4 0.88 7.9¢-4 6.23e-4 1.27
€, (nmr) 1.6 50 0.03 2.8 28 0.1
&, (nmr) 4e-3 1 0.004 7e-3 1 0.007
o; (cm) 0.5 1.2 0.42 0.5 1.1 0.45
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ingle-Bunch Instabilities
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SuperB will operate at 1.47 mA/bunch in both rings.

With modest improvements in ring impedance the single-bunch

instabilities should be suffici
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ently controlled (but see S.N. Talk!)
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Low-Emittance Specifics

e The small emittance affects IBS and Touschek life
time

— IBS not seen in PEP, Touschek lifetime seen in LER
but not dominant

— > scaling 1s not so easily done
— Beam size ratios (xey): 1% (HER), 2.5% (LER)

e We estimated IBS emittance growth & Touschek
life time by simulation.

— The IBS simulations use the same code as used for ILC
DR studies (Wolski).

— Touschek simulations done with Da®ne code
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A. Wolski,
Liverpool,
SuperB
CDR.

New lattice
has

ex=2.8 nmr,
ey=4 pmr,
=> expect
less growth
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Space Charge Effects

e The small emittance can lead to the somewhat

unusual manifestation of space-charge effects esp.
in the LER.
— o« 1/g,/o;in x (=20), VB,/(VB*Ve, Ve 0) iny (=100)

* Tune shifts estimated to reach -0.18 in y

— emittance growth depending on tune space

o Effect studied in detail for ILC DR designs
— SuperB LER studied with the same code.
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Summary Single Bunch

e Microwave & TMCI thresholds appear to be
manageable.
— Esp. if we keep the impedance lower than at PEP

* Touschek beam lifetime is short in the LER.
— 20...25 min with the new lattice parameters
— Trickle charge an integral part of SuperB design
— Touschek background will have to be dealt with
e IBS appears to be a potentially serious challenge
for maintaining beam emittance.
— predicted growth up to 50% in y, 100% in x (CDR latt.)
— likely much less with new lattice parameters
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Multibunch Instabilit

* Both PEP-II rings exhibit strong low-mode
transverse multibunch instability.
— Thresholds are 100 mA or less total beam current

— Growth rates of up to 2/ms have been observed in the
LER, somewhat less in the HER.

— Modal spectrum suggests resistive wall.

* One cause is likely the stainless steel chambers in
the straight sections
— also some hints of resonant enhancement of growth
rates in the LER in y
* Transverse bunch-by-bunch feedbacks control this
— damping rates as strong as -8/ms (17 turns) observed
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Ion Effects (HER)

* Jon trapping can occur in the strong beam
potential of the SuperB HER.

e Remedies known to be effective:
— lon-clearing gap in the beam

— Low gas pressure in the vacuum system
— Clearing electrodes

* In the PEP-II HER, ions have been clearly seen
when vacuum conditions are bad

— Despite clearing gap (1.4%) => likely a fast-ion (single-
turn) effect

— Characteristic multibunch instability spectrum
* Reducing gap too much also causes instability.
18
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PEP-I1 HER Ion Instability (DIP Storm)

PRO4 VDIP 6082 (a number of other DIPS do this as well)
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* Feedback is not able to completely damp the beam
motion
— Growth rate at small amplitude 1s too high

— Instability present even in collision with strong Landau
damping from beam-beam (luminosity drop)

— Multiple gaps in beam reduce this effect

* For SuperB, relative effect may be much larger
because of the small beam size

o Will likely need better vacuum than in PEP-II
— May need multiple gaps in the beam

— May need clearing electrodes
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Tons in SuperB HER
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Electron Cloud Effect

e Electron-cloud instability (ECI) has been seen in
both PEP-II and KEKB.

e Solenoids, antechambers, TiN coating effective to
varying degree in reducing ECI
— But residual effects most likely remain

* Again, the small beam size in SuperB will likely
cause it to be more sensitive that PEP-II or KEKB

 More powerful mitigation measures:
— Reduce secondary emission with grooved chambers

— Use clearing electrodes
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Emittance growth from single-bunch instability driven by electron

ﬁéﬁhmi’ ‘ cloud in the SuperB positron ring (nominal parameters of the
2.25 Km LER). Instability threshold set tolerances on maximum
allowed SEY.
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clearing electrodes in an arc bend of the SuperB positron

‘ Buildup of the electron cloud and the suppression effect of
ring (nominal parameters of the 2.25 Km LER).

SUPER B Factory, ARC BEEND, bs=1.54ns, 2 clearing electrodes
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Summary Multibunch

* Resistive wall instability unlikely to limit SuperB

— SuperB vacuum chamber should have lower
impedance, thus smaller growth rates

— Landau damping due to beam-beam further helps
— TFB 1s very effective against this instability

* but noise impressed on beam could be problematic due to the
small beam sizes

* Jons in the HER & electrons in the LER may be
problematic
— lower pressure feasible but at great effort
— need for gaps in beam unattractive for upgrades
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Conclusion

° The SuperB low-emittance storage rings clearly
present challenges for beam stability & emittance
preservation.

* Fortunately,

— from B-Factory data we know the impedance
requirements can be met.

— B-Factory data also allow validation of estimates for
ion and electron-induced instabilities.

— Dafne provides an important testing ground for
Touschek & IBS estimates.

* A significant amount of work remains to be done
but the issues appear tractable.
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