Belle II highlights

Michele Veronesi (ISU)

UniBo seminar, 05/04/23

Outline

- Belle II experiment at SuperKEKB
- Historical introduction
- Detector operations
- B factory basics
- Recent Belle II highlights
- CKM measurements
- Lepton universality tests
- Charm and tau physics

CP-violation and the CKM

Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe

A. D. Sakharov

(Submitted 23 September 1966)
Pis'ma Zh. Eksp. Teor. Fiz. 5, 32-35 (1967) [JETP Lett. 5, 24-27 (1967).
Also S7, pp. 85-88]
Usp. Fiz. Nauk 161, 61-64 (May 1991

The theory of the expanding universe, which presup poses a superdense initial state of matter, apparently excludes the possibility of macroscopic separation of matte rom antimatter; it must therefore be assumed that there are no antimatter bodies in nature, i.e., the universe is asymmet rical with respect to the number of particles and antiparticle rical with respect to the number of particles and antiparticles
a asymmetry). In particular, the absence of antibaryon and the proposed absence of baryonic neutrinos implies a nonzero baryon charge (baryonic asymmetry). We wish to point out a possible explanation of C asymmetry in the hot model of the expanding universe (see Ref. 1) by making use of effects of $C P$ invariance violation (see Ref. 2). To explain baryon asymmetry, we propose in addition an approximate character for the baryon conservation law.

According to our hypothesis, the occurrence of C asymmetry is the consequence of violation of $C P$ invariance in the nonstationary expansion of the hot universe during the superdense stage, as manifest in the difference between the parial probabilities of the charge-conjugate reactions. This ef fect has not yet been observed experimentally, but its xistence is theoretically undisputed (the first concrete exmple, Σ_{+}and Σ_{-}decay, was pointed out by \mathbf{S}. Okubo as early as 1958) and should, in our opinion, have much cosmological significance

- Violation of charge-conjugation and parity-reversal (CP-violation) necessary ingredient to explain the imbalance between matter and antimatter in the universe
- Accommodated in the weak interactions of quarks via the Cabibbo-KobayashiMaskawa (CKM) unitary matrix, represented as a triangle in the complex plane

Asymmetric B-factories

[PRL87. 091801 (2001)]

[PRL87. 091802 (2001)]

[2001]

- Observation of CP-violation in the interference of $B^{0} \rightarrow J / \psi K^{0}$ and $B^{0} \rightarrow \bar{B}^{0} \rightarrow J / \psi K^{0}$, constraining the UT angle β / ϕ_{1}
- Achievements summarized in the "The physics of the B-factories" book [arxiv.org:1406.6311]

"As late as 2001, the two particle detectors BaBar at Stanford, USA and Belle at Tsukuba, Japan, both detected broken symmetries independently of each other. The results were exactly as Kobayashi and Maskawa had predicted almost three decades earlier." [https:// www.nobelprize.org/prizes/ physics/2008/press-release/]

Belle II

- Successor of Belle at the upgraded SuperKEKB high-Iuminosity collider
- Broad physics program building upon end expanding that of Belle
- World-wide effort of ~ 100 institutes and ~1000 collaborators

SuperKEKB

- Asymmetric $e^{+} e^{-}$accelerator operating in Tsukuba, Japan
- Colliding 7 GeV electrons on 4 GeV positrons at $Y(4 \mathrm{~s})$ mass
- 30x increase in luminosity wrt KEKB thanks to the new nanobeam scheme

Tsukuba

- Currently in LS1, resuming data-taking in winter
- Installation of new 2-layered pixel detector
- Replacement of beam pipe and aging detector components
- Additional shielding and increased resilience against higher beam backgrounds

Operations

- Producing abundant sample of B, D and τ decays
- Most ee->ll collisions discarded based on event multiplicity
- 30 (now) / 600 (design) BB, DD per second along with 2-3x production of light quarks
- Several milestones reached so far
- Achieved world's highest instantaneous luminosity $\left(4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
- Collected $362 \mathrm{fb}^{-1}$ dataset at the $\mathrm{Y}(4 \mathrm{~s})$ in 2019-22, corresponding to 387M B \bar{B} pairs
- Recorded ~20fb-1 unique dataset above the $Y(4 s)$, and $\sim 40 f b-1$ off-resonance

Detector

e+e- collisions

- Clean experimental environment, offering several advantages
- Efficient reconstruction of neutrals and missing energy
- Kinematic constraints from known initial energy at $Y(4 s)$
- Comparable performance for muons and electrons
- Non biasing triggers for B and D physics
- Low multiplicity triggers for single track, muon, photon

B-factory analysis 101

Beam-constrained mass [GeV/c²]

Energy difference [GeV]

If

Event shape

- High resolution (~2-10 MeV) high-level analysis variables (Mbc, $\triangle \mathrm{E}$), separating signal from backgrounds, using the knowledge of beam energy
- Several event shape variables exploiting the correlations in e+e- collision, usually combined into continuum-suppression classifier

Time measurement

- Measuring the time difference Δt of coherently produced $B \bar{B}$ pairs from the decay of a $Y(4 S)$, boosted along z
- Improved vertex resolution from pixel in spite of lower boost
- Belle: $\beta \gamma=0.43, \Delta z \approx 200 \mu \mathrm{~m} \rightarrow$ Belle $\|$: $\beta \gamma=0.29, \Delta z \approx 130 \mu \mathrm{~m}$
- Enhanced Δt resolution from the beam spot profile in combination with the new nano-beam scheme

Pixel detector radius $\approx 1.4 \mathrm{~cm}$

- Highly efficient category-based flavor tagger (Etag~30\%)

Δt resolution and flavor tagging

Resolution ~ 1 ps

Mistag ~ 30\%

Δt resolution and flavor tagging

Resolution ~ 1 ps
Mistag ~ 30\%

\square

\square

Interference b/w mixing and
decay in b->ccs transitions

Δm and $\sin 2 \phi 1$

- High-yield, low-background modes used for benchmark measurements of timedependent observables
- Main challenge: accurate understanding of vertex resolution ($\Delta \mathrm{t}$ resolution $\sim 1 \mathrm{ps}$) and flavor tagging (عtag 30\%)

Δm and $\sin 2 \phi_{1}$

$$
\begin{aligned}
\tau_{B^{0}} & =(1.499 \pm 0.013 \pm 0.008) \mathrm{ps} \\
\Delta m_{d} & =(0.516 \pm 0.008 \pm 0.005) \mathrm{ps}^{-1}
\end{aligned}
$$

$\sin 2 \phi_{1}$ with penguins

- Measurements of sin2 ϕ_{1} in b->qqs transitions can be used as a probe of generic BSM physics
- Clean theory prediction (~few \%)

- Loop-suppressed, potentially affected by competing BSM amplitudes
- Experimentally challenging, due to
- Small BF (\sim^{-6}) and neutrals in the final state $\left(K_{s}, \pi^{0}\right)$
- Sophisticated analysis techniques (tagging and Δt resolution)

$$
\sin \left(2 \beta^{\text {eff }}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \frac{H F L A V}{2021}
$$

-	$b \rightarrow c \mathrm{cs}$	World Average		0.70 ± 0.02
	ϕK^{0}	Average		0.80 ± 0.12
	$\eta^{\prime} K^{0}$	Average	*	0.63 ± 0.06
-	$\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$ Average			0.83 ± 0.17
-	$\pi^{0} K^{0}$	Average	ம*	0.57 ± 0.17

sin2 ϕ_{1} with penguins

[BELLE2-PUB-2023-004,
in preparation]

[BELLE2-PUB-2023-002,
in preparation]

[BELLE2-PUB-2023-005,
in preparation]

- Dilution from non-resonant decays with opposite CP modeled in $\cos \theta\left(\mathrm{B}->\varphi \mathrm{K}_{s}\right)$
- Decay vertex reconstruction relying on the K_{s} trajectory and profile of the interaction point $\left(B->K_{s} K_{s} K_{s}\right.$ and $\left.B->K_{s} \Pi^{0}\right)$

$\sin 2 \phi_{1}$ with penguins

[BELLE2-PUB-2023-004,
in preparation]

$$
\begin{aligned}
A_{C P} & =0.31 \pm 0.20_{-0.06}^{+0.05} \\
S_{C P} & =0.54 \pm 0.26_{-0.08}^{+0.06}
\end{aligned}
$$

[BELLE2-PUB-2023-002,
in preparation]

$$
\begin{aligned}
& A_{C P}=0.07_{-0.20}^{+0.15} \pm 0.02 \\
& S_{C P}=-1.37_{-0.45}^{+0.35} \pm 0.03
\end{aligned}
$$

[BELLE2-PUB-2023-005,
in preparation]

$$
\begin{aligned}
& A_{C P}=0.04 \pm 0.15 \pm 0.05 \\
& S_{C P}=0.75_{-0.23}^{+0.20} \pm 0.04
\end{aligned}
$$

WA: $S=-0.83 \pm 0.17, A=0.15 \pm 0.12$

$K \pi$ isospin sum rule and ϕ_{2}

$$
\begin{aligned}
& \text { WA: -0.13 } \pm 0.11
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{C P}^{K^{+} \pi^{-}}=-0.072 \pm 0.019 \pm 0.007 \\
& \mathcal{B}_{K^{+} \pi^{-}}=(20.67 \pm 0.37 \pm 0.62) \times 10^{-6}
\end{aligned}
$$

- Null test of SM with $O(1 \%)$ theoretical uncertainty
- Experimentally limited by knowledge of $K_{s} \pi^{0}$
- $\mathrm{B}->\pi \pi$ modes providing inputs for determination of ϕ_{2} from time-dependent analysis of $\mathrm{B}^{0}->\pi^{+} \pi^{-}$
- Belle Il is able to access all final states
[BELLE2-PUB-2023-009, in preparation]

$K \pi$ isospin sum rule and ϕ_{2}

$$
\begin{aligned}
& \text { WA: }-0.13 \pm 0.11 \\
& I_{K \pi}=\mathcal{A}_{C P}^{K^{+} \pi^{-}}+\mathcal{A}_{C P}^{K_{P}^{0} \pi^{+}} \frac{\mathcal{B}_{K^{0} \pi^{+}}}{\mathcal{B}_{K^{+}} \pi^{-}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} \\
& -2 \sqrt{\mathcal{A}_{C P}^{K+\pi^{0}}} \sqrt{\mathcal{B}_{K^{+} \pi^{0}}} \frac{\tau_{B^{0}}}{\mathcal{B}_{K^{+}}-2 \mathcal{A}_{B^{+}}^{K^{0} \pi^{0}}} \frac{\mathcal{B}_{K^{0} \pi^{0}}}{\mathcal{B}_{K^{+} \pi^{-}}} \\
& \begin{array}{c}
\mathcal{A}_{C P}^{K^{+} \pi^{0}}=0.013 \pm 0.027 \pm 0.005 \\
\mathcal{B}_{K^{+} \pi^{0}}=(14.21 \pm 0.38 \pm 0.85) \times 10^{-6} \\
\hline
\end{array}
\end{aligned}
$$

- Null test of SM with $O(1 \%)$ theoretical uncertainty
- Experimentally limited by knowledge of $K_{s} \Pi^{0}$
- $\mathrm{B}->\pi \pi$ modes providing inputs for determination of ϕ_{2} from time-dependent analysis of $\mathrm{B}^{0}->\pi^{+} \pi^{-}$
- Belle II is able to access all final states
[BELLE2-PUB-2023-009, in preparation]

$K \pi$ isospin sum rule and ϕ_{2}

WA: -0.13 ± 0.11

$$
\begin{aligned}
& I_{K \pi}=\mathcal{A}_{C P}^{K^{+} \pi^{-}}+\mathcal{A}_{C P}^{K_{P}^{0}}+\frac{\mathcal{B}_{K^{0} \pi^{+}}}{\mathcal{B}_{K^{+}+-}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} \\
& -2 \mathcal{A}_{C P}^{K_{P}^{+}} \frac{\mathcal{B}_{K^{+}} \pi^{0}}{\mathcal{B}_{K^{+} \pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathcal{A}_{C P}^{K_{P}^{0}}{ }^{\pi}=\frac{\mathcal{B}_{K^{0} \pi^{0}}}{\mathcal{B}_{K^{+}}}
\end{aligned}
$$

$$
\begin{array}{c|c}
\mathcal{A}_{C P}^{K^{0} \pi^{+}}=0.046 \pm 0.029 \pm 0.007 & \mathcal{A}_{C P}^{K^{0} \pi^{0}}=-0.06 \pm 0.15 \pm 0.05 \\
\mathcal{B}_{K^{0} \pi^{+}}=(24.4 \pm 0.71 \pm 0.86) \times 10^{-6} & \mathcal{B}_{K^{0} \pi^{0}}=(10.16 \pm 0.65 \pm 0.65) \times 10^{-6} \\
\hline
\end{array}
$$

- Null test of SM with $O(1 \%)$ theoretical uncertainty
- Experimentally limited by knowledge of $K_{s} \pi^{0}$
- $\mathrm{B}->\pi \pi$ modes providing inputs for determination of ϕ_{2} from time-dependent analysis of $\mathrm{B}^{0}->\pi^{+} \pi^{-}$
- Belle Il is able to access all final states

$K \pi$ isospin sum rule and ϕ_{2}

WA: -0.13 ± 0.11

$$
I_{K \pi}=-0.03 \pm 0.13 \pm 0.05
$$

[BELLE2-PUB-2023-009, in preparation]

$$
\begin{gathered}
\mathcal{B}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=(1.38 \pm 0.27 \pm 0.22) \times 10^{-6} \\
\mathcal{A}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=0.14 \pm 0.46 \pm 0.07 \\
\text { arxiv:2303.08354 }
\end{gathered}
$$

- Null test of SM with $\mathrm{O}(1 \%)$ theoretical uncertainty
- Experimentally limited by knowledge of $K_{s} \Pi^{0}$
- $\mathrm{B}->\pi \pi$ modes providing inputs for determination of ϕ_{2} from time-dependent analysis of $\mathrm{B}^{0}->\pi^{+} \pi^{-}$

- Belle Il is able to access all final states

GLW determination of ϕ_{3}
[BELLE2-PAPER in preparation]

- $\mathrm{B}^{ \pm->} \mathrm{D}^{0} K^{ \pm}$with $D^{0-}>\mathrm{K}^{+} \mathrm{K}^{-}, \mathrm{K}_{s}^{0} T^{0}(\mathrm{CP}$ eigenstates) and $K \pi$ (flavor specific)
- Used to extract \$3 together with hadronic parameters

$$
\begin{aligned}
& \mathcal{R}_{C P \pm} \equiv \frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{\text {flav }} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{\text {flav }} K^{+}\right)} \\
& \mathcal{A}_{C P \pm} \equiv \frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)},
\end{aligned}
$$

2 ratios of BRs and 2 asymmetries

GLS determination of ϕ_{3}

[BELLE2-PAPER in preparation]

$$
\mathcal{A}_{m}^{D h} \equiv \frac{N_{m}^{D h^{-}}-N_{m}^{D h^{+}}}{N_{m}^{D h^{-}}+N_{m}^{D h^{+}}}
$$

- Used to constrain ϕ_{3} from the knowledge

$$
\text { with } \quad h=\pi, K, \quad m=\mathrm{SS}, \mathrm{OS},
$$ of D0 decay dynamics (CLEO)

4 asymmetries

Belle (772M BB) + Belle II (387M BB) in K^{*} region

$$
\begin{aligned}
A_{\mathrm{SS}}^{D K} & =0.055 \pm 0.119 \pm 0.020, \\
A_{\mathrm{OS}}^{D K} & =0.231 \pm 0.184 \pm 0.014, \\
A_{\mathrm{SS}}^{D \Pi} & =0.046 \pm 0.029 \pm 0.016, \\
A_{\mathrm{OS}}^{D \Pi} & =0.009 \pm 0.046 \pm 0.009, \\
R_{\mathrm{SS}}^{D K / D \pi} & =0.093 \pm 0.012 \pm 0.005, \\
R_{\mathrm{OS}}^{D K / D \pi} & =0.103 \pm 0.020 \pm 0.006, \\
R_{\mathrm{SS} / \mathrm{OS}}^{D \pi} & =2.412 \pm 0.132 \pm 0.019 .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}_{m}^{D K / D \pi} & \equiv \frac{N_{m}^{D K^{-}}+N_{m}^{D K^{+}}}{N_{m}^{D \pi^{-}}+N_{m}^{D \pi^{+}}} \\
\mathcal{R}_{\mathrm{SS} / \mathrm{OS}}^{D \pi} & \equiv \frac{N_{\mathrm{SS}}^{D \pi^{-}}+N_{\mathrm{SS}}^{D \pi^{+}}}{N_{\mathrm{OS}}^{D \pi^{-}}+N_{\mathrm{OS}}^{D \pi^{+}}}
\end{aligned}
$$

Vub vs. Vcb

- ~3 discrepancy between the inclusive and exclusive determination of |Vub| and |Vcb|
- Limiting the global constraining power of UT fits
- Important inputs for BF prediction of ultra-rare decays, e.g. K->TVV
[Credits: K. Kojima]

	Experiment	Theory
Exclusive $\left\|\mathbf{V}_{\mathrm{cb}}\right\|$	$\mathrm{B} \rightarrow$ Dlv, D*/v (low backgrounds)	Lattice QCD, light cone sum rules
Inclusive $\left\|\mathbf{V}_{\mathrm{cb}}\right\|$	$\mathrm{B} \rightarrow$ Xlv (higher background)	Operator product expansion

Tagging

[Credits: H. Junkerkalefeld]

Recent Belle II results

[Credits: C. Lyu and H. Junkerkalefeld]

arXiv:2301.04716 Novel $\left|V_{c b}\right|$ extraction method ${ }^{[1]}$
based on measured q^{2} moments
by Belle ${ }^{[2]}$ \& Belle $\mathrm{II}^{[3]}$
[1] = JHEP 10068 (2022), [2] = Phys. Rev. D 104, 112011,

Lepton universality tests

[arXiv:2301.08266]
Belle II Preliminary $\int \mathcal{L} d t=189 \mathrm{fb}^{-1}$

[BELLE2-PUB-2023-007, in preparation]
Belle II Preliminary $\int \mathcal{L} d t=189 \mathrm{fb}^{-1}$

\square	$w_{\text {high }}$
-	$w_{\text {low }}$
\bullet	$w_{\text {incl }}$.
	SM
//1/,	Belle (2023)
N11	Belle II (2023)
\square	Bobeth, et al.

- First inclusive measurement of light-lepton universality ratio with B->XIv (l=e, μ)

$$
\begin{aligned}
& \text { Preiminiay } \\
& R\left(X_{e / \mu}\right)=\mathbf{1 . 0 3 3} \pm \mathbf{0 . 0 1 0}{ }^{\text {stat }} \pm \mathbf{0 . 0 1 9}^{\text {syst }},
\end{aligned}
$$

- Complete set of five angular asymmetries with had-tag B->D*Iv (I=e, μ)

Charm lifetimes

- Rich program of charm lifetimes measurements
- Already world's leading determinations using only partial dataset
- Important input for HQE predictions and lifetime hierarchy

$$
\tau\left(\Xi_{c}^{0}\right)<\tau\left(\Lambda_{c}^{+}\right)<\tau\left(\Omega_{c}^{0}\right)<\tau\left(\Xi_{c}^{+}\right)
$$

Charm lifetimes

- Rich program of charm lifetimes measurements
- Already world's leading determinations using only partial dataset
- Important input for HQE predictions and lifetime hierarchy

$$
\tau\left(\Xi_{c}^{0}\right)<\tau\left(\Lambda_{c}^{+}\right)<\tau\left(\Omega_{c}^{0}\right)<\tau\left(\Xi_{c}^{+}\right)
$$

Charm flavor tagger

- New flavor-tagging algorithm recovering D^{0} candidates not tagged by tradıtional approach reconstructing $D^{\star+}+>D^{0} \pi^{+}$decay chain
- Exploiting charm pair production and charge correlation between signal D flavor and the tracks in the rest of the events
- Effective tagging efficiency calibrated in data with flavor-specific decays, roughly doubling the size of tagged D^{0} sample

Tau mass

[BELLE2-PUB-2023-001, in preparation]

$$
M_{\min }=\sqrt{M_{3 \pi}^{2}+2\left(\sqrt{s} / 2-E_{3 \pi}^{*}\right)\left(E_{3 \pi}^{*}-P_{3 \pi}^{*}\right)} \leq m_{\tau}
$$

- New world's best determination (~10 keV precision!), reconstructing tag $\tau^{ \pm} \rightarrow \pi^{ \pm}\left(\pi^{\pi}\right) \mathrm{v}$, Iv and signal $\tau \rightarrow 3 \pi v$ using the $\mathrm{Mmin}^{\text {method }}$
- Kinematic edge at m_{T}, smeared due to detector resolution and tails from ISR

Tau mass

[BELLE2-PUB-2023-001, in preparation]

- Requires precise knowledge of beam energy and track momentum scale
- Benchmark for precision capabilities of Belle II

Miscellanea

- Rich quarkonium physics program
- Unique dataset near E_{cm} ~10.75 GeV
- Complementary sensitivity to dark sector searches in light mass ranges
$\left[e+e-->B\left({ }^{*}\right) B\left({ }^{*}\right) x\right.$-sections]

- EW penguin and radiative decays
- Benefit from ~equal e,u reconstruction and excellent capabilities with neutrals
- Still limited by size of dataset
[First LLP search at Belle I]]

Full list of recent results (<1yr)

ICHEP 2022 [~half pre-LS1 dataset]
Moriond 2023 [~full pre-LS1 dataset]

- \mid Vcb| from untagged B->DIV decays [arxiv:2210.13143]
- |Vub| from untagged B->ாlv decays [arxiv:2210.04224]
- $\mathrm{BF}(\mathrm{B}->\mathrm{plv})$ from tagged decays [arxiv:2211.15270]
- LFU test in inclusive B->XIv [arxiv:2301.08266]
- Photon energy spectrum in inclusive $B->X_{s} y[\underline{a r x i v: 2210.10220] ~}$
- Measurement of $\sin 2 \phi$ ı [arxiv:2302.12898]
- CPV in B-> $K_{s} K_{s} K_{s}$ [arxiv:2209.09547]
- BF and fl in B->pp [arxiv.org:2208.03554]
- BF and $A_{c p}$ in $B^{+->} h^{+} \pi^{0}[$ arxiv:2209.05154]
- BF and Acp in B-> $\pi^{0} \pi^{0}$ [arxiv:2303.08354]
- Search for t->la (invisible) [arxiv:2212.03634]
- Observation of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \boldsymbol{\omega}$ xb at 10.75 GeV [arxiv:2208.13189]
- BF, isospin asymmetry and LFU in B->J/廿K [arxiv:2207.11275]
- Search for Z'->invisible [arxiv:2212.03066]
- Search for $Z^{\prime}, ~ S, ~ A L P ~->\pi$, $\mu \mu \pi \tau$ [in preparation]
- Ω_{c} lifetime [arxiv:2208.08573]
[in preparation]
- Charm flavor tagger
- CPV in $\mathrm{B}->\phi \mathrm{K}_{s}$
- CPV in B->K $K_{s} T 0$
- CPV in $B->K_{s} K_{s} K_{s}$
- |Vcb| with B->D*Iv untagged
- LFU test in angular asymmetries with B->D*|v
- BF and $A_{C P}$ in $B->K \pi$ and $B->\pi \pi$
- t lepton mass
- LLP search in b->s transitions
- BF and CP asymmetries in B->DK GLS
- BF and CP asymmetries in B->DK GLW
- LFU in angular asymmetries in had-tag B->D*Iv
- Energy dependence of ee->BB,B*B,B*B*x-sections
- BF in B->D(*)KKs decays
- Search for T->|

Summary

- New flavor physics experiment offering complementarity and redundancy to measurements at pp colliders
- Clean experimental environment and unique access to final states with $K^{0}, \pi^{0}, \gamma, v$
- ~30 new results in the past 9 months and restarting data taking soon

