Testing the Standard Model at high energy: the weak mixing angle

$$
\sin \theta_{w}=\frac{e}{g_{2}} \xrightarrow{\text { schema } \overline{M S}} \sin \theta_{w}^{\overline{M S}}(\mu)=\frac{e^{\overline{\overline{M S}}}(\mu)}{g_{2}^{\overline{M S}}(\mu)}
$$

In QFT calculations some input data is necessary to produce numerical predictions \rightarrow renormalization scheme

Renormalization scheme $\left(\alpha^{\overline{M S}}(\mu), \sin ^{2} \theta_{w}^{\overline{M S}}(\mu), M_{Z}\right)$ to directly determine the $\overline{M S}$ weak mixing angle

NLO running in Monte Carlo generator POWHEG-BOX for simulation of neutral current Drell Yan

Fit considering Run 3 ($300 \mathrm{fb}^{-1}$) e HL-LHC (3000 fb-1)
Templates with SM running for $\alpha^{\overline{M S}}(\mu)$ and $\sin ^{2} \theta_{w}^{\overline{M S}}\left(\mu=\hat{m}_{\ell \bar{\ell}}\right) \pm 0.01 \quad \hat{m}_{\ell \bar{\ell}} \rightarrow$ central point of bin

Amoroso, Chiesa, Del Pio, Lipka, Piccinini, Vazzoler, Vicini
Phys. Lett. B 844 (2023) 138103

INFN

Phenomenology at the LHC of Composite Boson Leptoquarks from Strongly Interacting SM Fermions via Four-Fermion Operators of NJL type

S. Ajmal, J. T. Gaglione, F. Romeo, A. Gurrola, O.Panella, M. Presilla, H. Sun, and S. S. Xue

Exploring Composite Leptoquarks at the LHC

- Motivated by significant deviations from the Standard Model in B meson decays and LHC data
- Composite Model \rightarrow Nambu-Jona-Lasinio (NJL) Four Fermion Interactions at high-energy scaling region, yielding an effective theory of composite particles while preserving SM symmetries.

$$
\sum_{f=1,2,3} G\left[{\overline{\psi_{L}}}^{f} \psi_{R}^{f}{\overline{\psi_{R}}}^{f} \psi_{L}^{f}\right]_{Q_{i}=0,-1, \frac{2}{3},-\frac{1}{3}} . \quad \text { where } G \propto \Lambda^{-2}
$$

- Under investigation leptoquarks are Scalars with charge $5 / 3 e$ and coupling (ue, $\boldsymbol{\mu c}$)
- Signal Processes $p \boldsymbol{p}>\boldsymbol{l}^{+} \boldsymbol{l}^{-}(0-3 \boldsymbol{j e t s}) \& p p>\boldsymbol{l}^{+} \boldsymbol{l}^{-} \boldsymbol{j}, \boldsymbol{p}=\gamma, g, q$ (InElastic case)
- Search Strategy
- Signal: Two leptons (e or μ) $+0,1,2$, or ≥ 3 jets and used Jet merging Technique
- Backgrounds: Top, WJ, VV, Drell-Yan
- Selection: Leptons ($\mathrm{pT}>20 \mathrm{GeV},|\mathrm{n}|<2.5$, invariant lepton pair mass $>120 \mathrm{GeV}$, MET $<50 \mathrm{GeV}$)
- Jets: $\mathrm{pT}>20 \mathrm{GeV},|\eta|<5, \Delta \mathrm{R}>0.4$ separation from leptons, no b-jets.
- S_{T} and χ as discriminating variable.

Examined the coupling $g_{y}(0.5$ to 2.5$)$ on outcomes, illustrated the mass-coupling relationship in 2D at 13 TeV COM energy and projected 2 (dashed) and 5 (plain) σ contours for different luminosities. Red $\rightarrow 3000 \mathrm{fb}^{-1}$, Green $\rightarrow 300 \mathrm{fb}^{-1}$ and blue $\rightarrow 140 \mathrm{fb}^{-1}$

Thank you for your altention

RG effects in pp \rightarrow th in the SMEFT

S. Di Noî, R. Gröber (UNIPD \& I.N.F.N.)

- Define the SMEFT 4t coefficients @ $\Lambda=0(1$ TeV) [Ethier et.al.,'21]
- Test their impact on distributions using a dynamical renormalization scale:

$$
\mu_{R}=\left(m_{T, t} m_{T, \bar{t}} m_{T, H}\right)^{1 / 3}, m_{T, i}=\sqrt{p_{T, i}^{2}+m_{i}^{2}}
$$

- Test several implementations of running effects (leading-log, numeric) us fixed scale.
- Running effects up to 0(10\%)!

An high-efficiency tool is needed: RGESolver [SDN, Silvestrini,'22]

This plot: 100000 events, ~ 15 min (parallelized).

