What cosmology can tell us about neutrinos

Maria Archidiacono

DEGLI STUDI DI MILANO

UNIVERSITÀ

XXXVII Convegno Nazionale di Fisica Teorica, Cortona, 26-29 September 2023

Why neutrino cosmology

mass → ≈2.3 MeV/c² ≈1.275 GeV/c2 ≈173.07 GeV/c2 ≈126 GeV/c² 2/3 2/3 2/3 charge С g Η t u 1/2 1/2 spin \rightarrow 1/2 Higgs boson Dark Energy up charm top gluon 73% ≈4.8 MeV/c² ≈95 MeV/c² ≈4.18 GeV/c² QUARKS -1/3 -1/3 -1/3 S b γ d Dark Matter 1/2 1/2 1/2 23% strange bottom down photon 1.777 GeV/c2 0.511 MeV/c2 105.7 MeV/c2 91.2 GeV/c² е Ζ μ τ 1/2 1/2 1/2 SONS electron tau Z boson muon BO Atomic Matter <0.17 MeV/c² <15.5 MeV/c² 80.4 GeV/c² <2.2 eV/c² LEPTONS 4.6% 0 GAUGE \mathcal{D}_{e} \mathcal{V}_{μ} \mathcal{D}_{τ} W 1/2 1/2 1/2 Light Neutrinos electron tau neutrino 0.005% muon W boson 0.0034% neutrino neutrino Open question: Neutrino mass

 Λ CDM model of cosmology

Standard Model of particles

What cosmology can tell us about neutrinos

• Neutrino number N_{eff} = (energy density of neutrinos + BSM light particles)

(energy density of one neutrino species)

 $N_{eff}^{SM} = 3.043 \pm 0.001$ [Mangano et al. 2002, Froustey et al. 2020, Cielo et al. 2023]

• Neutrino mass
$$\Omega_
u h^2 = rac{\sum m_{
u,i}}{93.12 \mathrm{eV}}$$
 [Mangano et al. 2005, Froustey et al. 2020]

not individual masses [Archidiacono et al. 2020]

How cosmology can measure neutrinos

Maria Archidiacono – University of Milan

Neutrino energy

Cosmological observables

Indirect probes of C

Impact of Σm_{ν}

 10^{3}

 10^{2}

Multipole *l*

 10^{-3}

• Impact on CMB [Bashinsky & Seljak 2004, Lesgourgues & Pastor 2006]

0.85

 10^{1}

Indirect probes of $C\nu B$

• Impact on structure formation: Free-Streaming $d_{\text{FS},i} \sim 1 \operatorname{Gpc} \frac{eV}{m_{\nu,i}}$

$$m_{
u} = 0.5 \, eV$$

Indirect probes of $C\nu B$

Impact on power spectrum of matter density fluctuations

Neutrino mass constraints: recent history

Maria Archidiacono – University of Milan

Stage IV Large Scale Surveys

Spectroscopy Imaging

Euclid in a nutshell

- **ESA** M2 space mission in the framework of the Cosmic Vision program
- Launch July 1st 2023. Duration > 6 years
- 1.2m telescope with two instruments: Visible Imager (VIS) and Near Infrared Spectrometer and Photometer (NISP)
- Wide survey (15.000 deg²) and deep survey (40 deg² in 3 different fields)
- Measurements of over 1 billion images and more than 10 millions spectra of galaxies out to z>2
- Main scientific objectives: Dark Energy, Dark Matter, and General Relativity
- Primary probes: Galaxy Clustering and Weak Lensing (1% accuracy)

Indirect probes of $C\nu B$

• Impact on power spectrum of matter density fluctuations

Known unknowns (systematics, etc.)

- Galaxy bias P_{galaxy} = b² P_{matter} + N
 [Castorina et al. 2014, Vagnozzi, Brinckmann, MA et al. 2018]
- Non-linearities [Euclid Collaboration: Martinelli, Tutusaus, MA et al. 2020; Euclid Collaboration: Knabenhans et al. 2020]
- 3. Baryonic feedback [Chisari 2019]

Euclid Collaboration: Martinelli, Tutusaus, Archidiacono et al. 2020

Neutrino mass constraints: the future

Euclid preparation: Sensitivity to neutrino parameters. Project leads: Archidiacono & Lesgourgues

Planck + Euclid: 3σ evidence of a non-zero neutrino mass sum CMB-S4 + Euclid: 5σ

Maria Archidiacono – University of Milan

Neutrino mass constraints: the future

Euclid preparation: Sensitivity to neutrino parameters. Project leads: Archidiacono & Lesgourgues

Replacing the cosmological constant with dark energy with a time varying equation of state parameter increases the error by a factor 2

Maria Archidiacono – University of Milan

Hierarchy?

The debate over the hierarchy

«Decisive evidence for the normal hierarchy» Jimenez et al. 2022

Maria Archidiacono – University of Milan

0.050

0.020

The debate over the hierarchy

«Moderate evidence, mostly driven by neutrino oscillation data» Gariazzo et al. 2022 (see also Hergt et al. 2021)

case A is based on Jimenez et al.: a Gaussian prior on the logarithm of the three neutrino mass eigenstates

"The significance of the preference in favor of NO changes significantly when we consider different parameterizations."

For a different approach, Long et al. 2018, and Heavens & Sellentin 2018

Maria Archidiacono – University of Milan

The debate over the hierarchy

Cosmology is not sensitive to individual masses

Future (current?) cosmological data can potentially disfavour IH

Maria Archidiacono – University of Milan

Conclusions

- Current cosmological bounds $\Sigma m_v < 0.111$ (95%cl)
- Future LSS and CMB surveys can provide a 3 to 5σ evidence for a non-zero neutrino mass sum
- Caveat:
 - Systematic effects
 - \circ Model dependence

Conclusions

- Current cosmological bounds $\Sigma m_v < 0.111$ (95%cl)
- Future LSS and CMB surveys can provide a 3 to 5σ evidence for a non-zero neutrino mass sum
- Caveat:
 - Systematic effects
 - \circ Model dependence

Stay tuned for Euclid results!

Backup

Cosmological observables

Reconstructing the matter power spectrum

The neutrino mass challange

Degeneracies and model dependence

Current bounds and future constraints are model dependent, i.e. they can be relaxed in extended models (beyond Λ CDM)

Higher order statistics can break degeneracies in extended models [Chudaykin et al. 2019, Hahn et al. 2020, Ajani et al. 2020]