Top-quark loops for precision Higgs physics

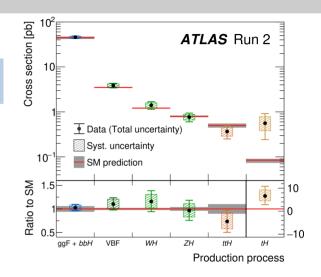
Marco Vitti - Padova University & INFN, Padova

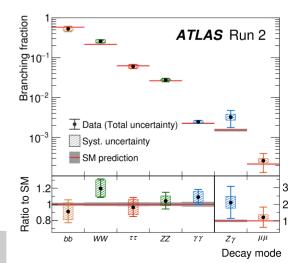
New Frontiers in Theoretical Physics Cortona Sep 28 2023

Outline

- 1. Precision Higgs Physics at the LHC
- 2.Example: $gg \rightarrow XY$ @ NLO QCD
- 3. Top-quark loops via pT expansion

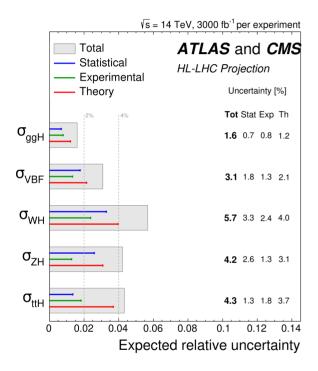
Work in collaboration with L. Alasfar, L. Bellafronte, G. Degrassi, P.P. Giardino, R. Gröber, X. Zhao

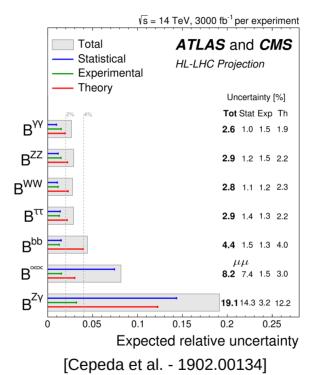

Higgs Physics at the LHC


Does the discovered Higgs boson behave as the SM predicts?

What we know after Run2 $(139 \, \text{fb}^{-1})$

- CP-even scalar
- Mass measured with permille precision
- Production and decay channels all compatible with SM predictions
- Experimental uncertainties in the 10-20% range


[ATLAS-2207.00092]



What next? Projections for High-Luminosity LHC

Systematic uncertainties will play important role

Theory uncertainties need to be reduced

GOAL: percent accuracy

[THIS TALK]

Missing higher orders in perturbative calculations

(multi-)loop Feynman diagrams

Other theory uncertainties

- Parametric uncertainties
- PDF determination
- Matching with parton showers

Where to look for improvements?

• Les Houches precision wishlist [Huss et al. - 2207.02122]

Table 1. Precision wish list: Higgs boson final states. $N^*LO^{(VBF*)}_{QCD}$ means a calculation using the structure function approximation. V = W, Z.

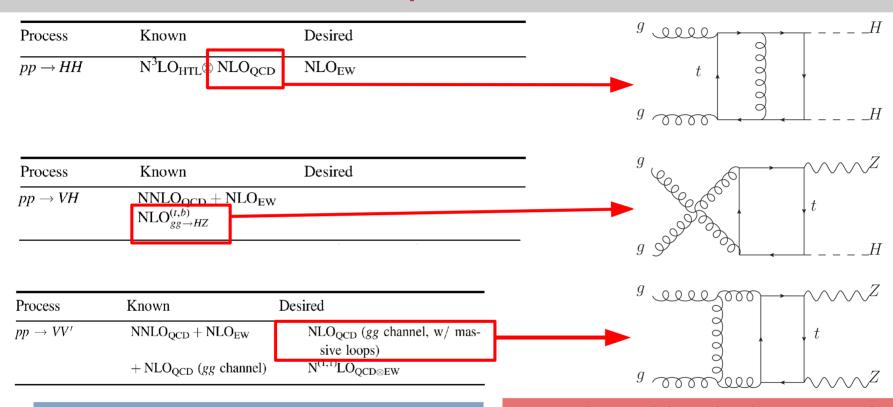
Process	Known	Desired	
pp o H	N^3LO_{HTL} $NNLO_{QCD}^{(f)}$ $N^{(1,1)}LO_{QCD\otimes EW}^{(HTL)}$ NLO_{QCD}	N [†] LO _{HTL} (incl.) NNLO ^(b,e) _{QCD}	
$pp \rightarrow H + j$	$NNLO_{HTL}$ NLO_{QCD} $N^{(1,1)}LO_{QCD\otimes EW}$	$NNLO_{HTL} \otimes NLO_{QCD} + NLO_{EW}$	
$pp \rightarrow H + 2j$	$\begin{array}{c} NLO_{HTL} \otimes LO_{QCD} \\ N^3LO \stackrel{(VBF^*)}{QCD} (incl.) \\ NNLO \stackrel{(VBF^*)}{QCD} \\ NLO \stackrel{(VBF)}{EW} \end{array}$	$\begin{array}{c} \text{NNLO}_{\text{HTL}} \otimes \text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}} \\ \text{N}^{3}\text{LO} \stackrel{(\text{VBF}^{*})}{\text{QCD}} \\ \text{NNLO} \stackrel{(\text{VBF}^{*})}{\text{QCD}} \end{array}$	
$pp \rightarrow H + 3j$	NLO _{HTL} NLO ^(VBF) QCD	$NLO_{QCD} + NLO_{EW}$	
$pp \rightarrow VH$	$NNLO_{QCD} + NLO_{EW}$ $NLO_{gg \rightarrow HZ}^{(t,b)}$		
$pp \rightarrow VH + j$	$NNLO_{QCD}$ $NLO_{QCD} + NLO_{EW}$	$NNLO_{QCD} + NLO_{EW}$	
$pp \rightarrow HH$	N³LO _{HTL} ⊗ NLO _{QCD}	NLO _{EW}	
****	••3• ~ (VRF*) • •		

Table 3. Precision wish list: vector boson final states. V = W, Z and V', V'' = W, Z, γ . Full leptonic decays are understood if not stated otherwise.

Process	Known	Desired
$pp \rightarrow V$	N^3LO_{QCD} $N^{(1,1)}LO_{QCD\otimes EW}$ NLO_{EW}	$\begin{aligned} &N^3LO_{QCD} + N^{(1,1)}LO_{QCD\otimes EW} \\ &N^2LO_{EW} \end{aligned}$
pp o VV'	$NNLO_{QCD} + NLO_{EW}$ + NLO_{QCD} (gg channel)	NLO_{QCD} (gg channel, w/ massive loops) $N^{(1,1)}LO_{QCD\otimes EW}$
$pp \rightarrow V + j$	$NNLO_{QCD} + NLO_{EW}$	hadronic decays
pp o V + 2j	$\begin{split} & \text{NI.O}_{\text{QCD}} + \text{NI.O}_{\text{EW}} \left(\text{QCD} \right. \\ & \text{component} \right) \\ & \text{NI.O}_{\text{QCD}} + \text{NI.O}_{\text{EW}} \left(\text{EW} \right. \\ & \text{component} \right) \end{split}$	NNLO _{QCD}

Where to look for improvements?

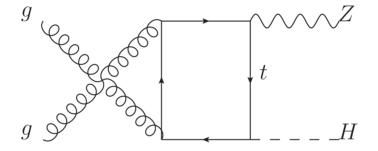
• Les Houches precision wishlist [Huss et al. - 2207.02122]


Table 1. Precision wish list: Higgs boson final states. N^{*}LO_{QCD}^(VBF*) means a calculation using the structure function approximation. V = W, Z.

Process	Known	Desired
pp ightarrow H	N^3LO_{HTL} $NNLO_{QCD}^{(t)}$ $N^{(1,1)}LO_{QCD\otimes EW}^{(HTL)}$ NLO_{QCD}	N ⁴ LO _{HTL} (incl.) NNLO ^(b,c) _{QCD}
$pp \rightarrow H + j$	$NNLO_{HTL}$ NLO_{QCD} $N^{(1,1)}LO_{QCD\otimes EW}$	$NNLO_{HTL.} \otimes NLO_{QCD} + NLO_{EW}$
$pp \rightarrow H + 2j$	$\begin{array}{c} NLO_{HTL} \otimes LO_{QCD} \\ N^3LO \stackrel{(VBF^*)}{QCD} \text{ (incl.)} \\ NNLO \stackrel{(VBF)}{QCD} \\ NLO \stackrel{(VBF)}{EW} \end{array}$	$\begin{array}{c} \text{NNLO}_{\text{HTL}} \otimes \text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}} \\ \text{N}^{3}\text{LO} \stackrel{\text{VBF*}}{\text{QCD}} \\ \text{NNLO} \stackrel{\text{(VBIF)}}{\text{QCD}} \end{array}$
$pp \rightarrow H + 3j$	NLO _{HTL} NLO ^(VBF) OCD	$NLO_{QCD} + NLO_{EW}$
$pp \rightarrow VH$	$\begin{array}{l} {\rm NNLO_{QCD} + NLO_{EW}} \\ {\rm NLO}_{gg \rightarrow HZ}^{(t,b)} \end{array}$	
$pp \rightarrow VH + j$	NILO _{COD} + NILO _{DW}	NNI OCCI + NI O
pp → HH	N³LO _{HTL} ⊗ NLO _{QCD}	NLO _{EW}
****	**3* ~ (VRF*)	

Table 3. Precision wish list: vector boson final states. V = W, Z and V', V'' = W, Z, γ . Full leptonic decays are understood if not stated otherwise.

Process	Known	Desired
$pp \rightarrow V$	$N^3 LO_{ m QCD} \ N^{(1,1)} LO_{ m QCD\otimes EW} \ NLO_{ m EW}$	$\begin{array}{l} N^3LO_{QCD}+N^{(1,1)}LO_{QCD\otimes EW} \\ N^2LO_{EW} \end{array}$
pp o VV'	$NNLO_{QCD} + NLO_{EW}$ + NLO_{QCD} (gg channel)	NLO _{QCD} (gg channel, w/ massive loops) N ^(1,1) LO _{QCD⊗EW}
$pp \rightarrow i + j$	NNLO _{QCD} + NLO _{EW}	hadronic decays
$pp \rightarrow V + 2j$	$\begin{aligned} & \text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}} \left(\text{QCD} \right. \\ & \text{component} \right) \\ & \text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}} \left(\text{EW} \right. \\ & \text{component} \right) \end{aligned}$	$NNLO_{QCD}$


Where to look for improvements?

Gluon-initiated 2 → 2 processes
Two-loop diagrams with massive
internal lines

Main problem in the NLO calculation Multi-scale (m_{Z},m_{H},m_{t},s,t) two-loop integrals No full analytic results

$gg \rightarrow ZH$

Solutions

Numerical Evaluation [Chen, Heinrich, Jones, Kerner, Klappert, Schlenk - 2011.12325]

- Exact results
- Demanding in terms of computing resources and time
- Issues with flexibility
- Analytic Approximations: exploit hierarchies of masses/kinematic invariants
- Reduce the number of scales in Feynman integrals
 Proliferation of integrals
 Restricted to specific phase-space regions
- Limit $m_t \! \to \! \infty$ [Altenkamp, Dittmaier, Harlander, Rzehak, Zirke 1211.50]
- Large mass expansion: add finite top-mass effects
 [Hasselhuhn, Luthe, Steinhauser - 1611.05881]
- High-energy expansion: $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$ [Davies, Mishima, Steinhauser 2011.12314]
- Small-mass expansion: $m_Z, m_H \rightarrow 0$ [Wang, Xu, Xu, Yang 2107.08206]
 - pT expansion: $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ [Alasfar, Degrassi, Giardino Groeber, MV 2103.06225] [Bonciani, Degrassi, Giardino, Groeber 1806.11564]

Solutions

Numerical Evaluation [Chen, Heinrich, Jones, Kerner, Klappert, Schlenk - 2011.12325]

- Exact results
- Demanding in terms of computing resources and time
- Issues with flexibility

Analytic Approximations: exploit hierarchies of masses/kinematic invariants

- Reduce the number of scales in Feynman integrals
 Proliferation of integrals
 Restricted to specific phase-space regions
- Limit $m_t \! \to \! \infty$ [Altenkamp, Dittmaier, Harlander, Rzehak, Zirke 1211.50]
- Large mass expansion: add finite top-mass effects
 [Hasselhuhn, Luthe, Steinhauser - 1611.05881]
- High-energy expansion: $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$ [Davies, Mishima, Steinhauser 2011.12314]
- Small-mass expansion: $m_Z, m_H \to 0$ [Wang, Xu, Xu, Yang 2107.08206]

pT expansion: $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ [Alasfar, Degrassi, Giardino Groeber, MV – 2103.06225] [Bonciani, Degrassi, Giardino, Groeber - 1806.11564]

pT Expansion: calculation overview

- 1. Generation of Feynman diagrams O(100 diags) (FeynArts [Hahn 0012260])
- 2. Lorentz decomposition of the amplitude: **projectors** and **scalar form factors** (FeynCalc [Mertig et al. ('91); Shtabovenko et al. 1601.01167]): contractions, Dirac traces...

$$\mathcal{A}_{\mu\nu\rho} = \sum_{i=1}^{6} \mathcal{P}_{\mu\nu\rho}^{(i)} F^{(i)} \qquad F^{(i)} = \sum_{i=1}^{n} C^{(i)} I^{(i)}(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2)$$

- 3. Expansion of the form factors in the limit of small pT
- 4. Decomposition of scalar integrals using integration-by-parts (IBP) identities (LiteRed [Lee 1310.1145])
- 5. Evaluation of master integrals

Steps implemented in Mathematica code on a desktop machine

pT Expansion

 $g(p_1)$ 000000000 $Z(p_3)$ $Z(p_3)$ $Z(p_3)$ $Z(p_4)$ $Z(p_4)$

We assume the limit of a forward kinematics

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

Then Taylor-expand the form factors in the ratios

$$\frac{m_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1$$
 $\frac{p_T^2}{4m_t^2} \ll 1$

Expansion at integrand level

Now scalar loop integrals depend on fewer scales

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2)$$

- The new scalar integrals are decomposed in MIs using IBP relations
- The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to \text{MI}(\hat{s}/m_t^2)$$

• 52 MIs already known in the literature + SAME MIs FOR $gg \rightarrow HH$, $gg \rightarrow ZH$, $gg \rightarrow ZZ$

pT Expansion

 $g(p_1)$ 000000000 $Z(p_3)$ $Z(p_3)$ $Z(p_3)$ $Z(p_4)$ $Z(p_4)$

We assume the limit of a forward kinematics

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

Then Taylor-expand the form factors in the ratios

$$\frac{m_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1$$

$$\frac{p_T^2}{4m_T^2} \ll 1$$

Expansion at integrand level

Now scalar loop integrals depend on fewer scales

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2)$$

- The new scalar integrals are decomposed in MIs using IBP relations
- The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to \text{MI}(\hat{s}/m_t^2)$$

• 52 MIs already known in the literature + SAME MIS FOR $gg \rightarrow HH$, $gg \rightarrow ZH$, $gg \rightarrow ZZ$

pT Expansion

 $g(p_1)$ 000000000 $Z(p_3)$ $Z(p_3)$ $Z(p_3)$ $Z(p_4)$

We assume the limit of a **forward kinematics**

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

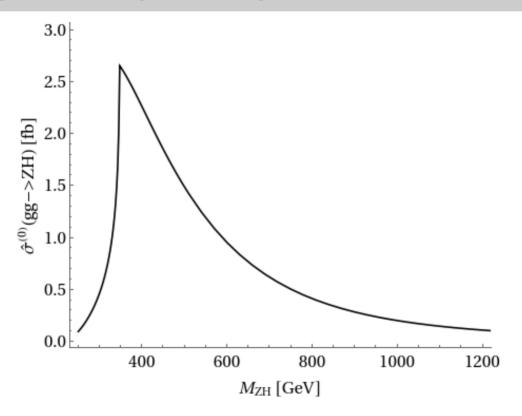
Then Taylor-expand the form factors in the ratios

$$\frac{m_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1$$

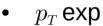
 $\frac{p_T^2}{4m_t^2} \ll 1$

Expansion at integrand level

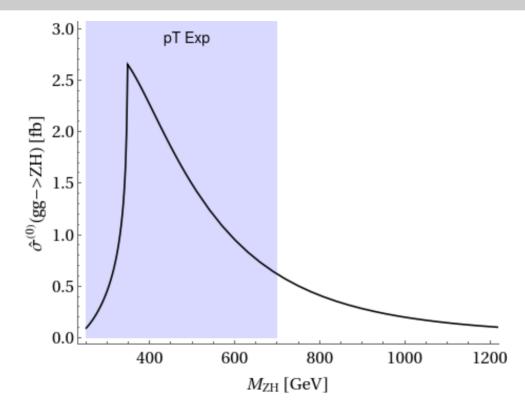
Now scalar loop integrals depend on fewer scales


$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2)$$

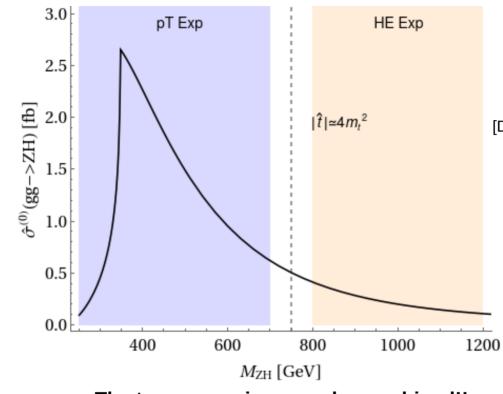
- The new scalar integrals are decomposed in MIs using IBP relations
- The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale


$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to \text{MI}(\hat{s}/m_t^2)$$

• 52 MIs already known in the literature + SAME MIs FOR $gg \rightarrow HH$, $gg \rightarrow ZH$, $gg \rightarrow ZZ$


Comparing Validity Ranges

Comparing Validity Ranges



$$p_T^2 \lesssim 4m_t^2$$
 or $\hat{t} \lesssim 4m_t^2$

Comparing Validity Ranges

 $p_T \exp$ $p_T^2 \lesssim 4m_t^2$ or $\hat{t} \lesssim 4m_t^2$

[Davies, Mishima, Steinhauser - 2011.12314]

High-Energy exp

 $\hat{t} \gtrsim 4m_t^2$

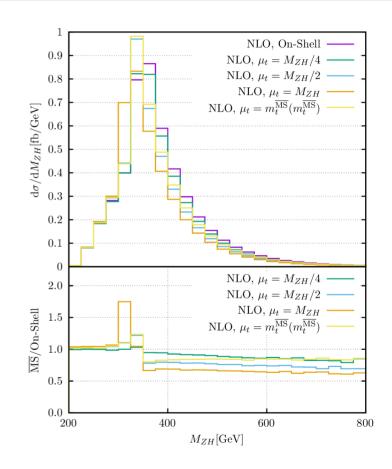
The two expansions can be combined!!

[Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225]

- Accuracy below the percent level ⇒ OK for phenomenology
- Evaluation time for a phase-space point below $0.1 s \Rightarrow$ suitable for Monte Carlo

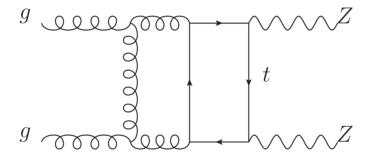
Full NLO QCD Results

Inclusive cross section


Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO}/\sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$		$118.6^{+16.7\%}_{-14.1\%}$		1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

- NLO corrections are the same size as LO $(K\sim2)$
- Scale uncertainties reduced by 2/3 wrt LO
- Agreement with independent calculations
 [Wang et al. 2107.08206] [Chen et al. 2204.05225]

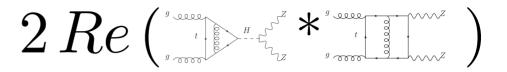
Top mass scheme uncertainty

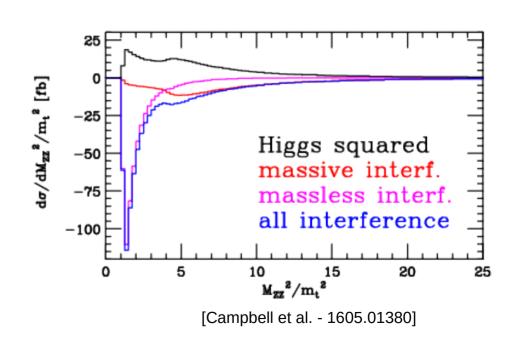

- Take deviations of $\overline{\text{MS}}$ scheme wrt OS result as top mass scheme uncertainty (used for HH production in [Baglio et al. 1811.05692, 2003.03227])
- Analytic results → change of top mass scheme is straightforward

$$F_i^{NLO,\overline{\rm MS}} = F_i^{NLO,\rm OS} - \frac{1}{4} \frac{\partial F_i^{LO}}{\partial m_t^2} \Delta_{m_t^2} \qquad \Delta_{m_t^2} = 2m_t^2 C_F \left[-4 + 3\log\left(\frac{m_t^2}{\mu^2}\right) \right]$$

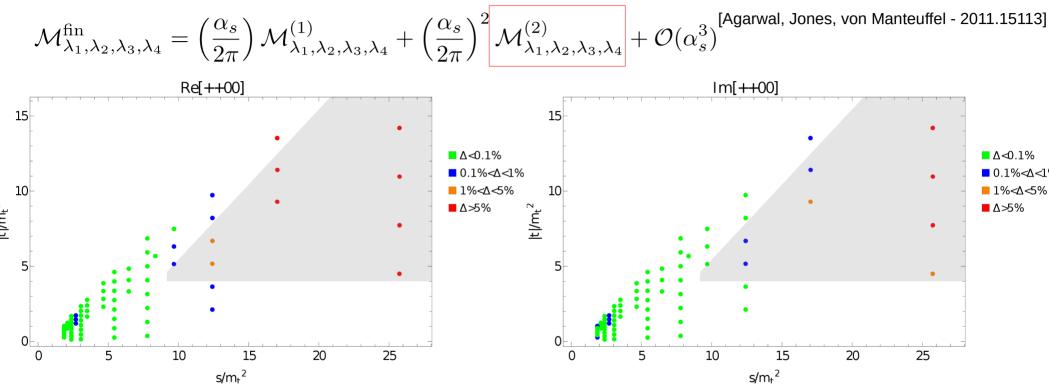
[Degrassi, Gröber, MV, Zhao - 2205.02769]

gg → *ZZ*


$gg \rightarrow ZZ$ and Higgs physics


- Destructive interference between $gg \to H^* \to ZZ$ and $gg \to ZZ$ in the off-shell region
- Relevant for indirect measurements of Higgs total width

[Kauer, Passarino – 1206.4803] [Caola, Melnikov – 1307.4935] [Campbell. Ellis, Williams - 1311.3589]


- Top loops are dominant in off-shell region
- Use pT expansion for the two-loop box diagrams

[Degrassi, Gröber, MV – in preparation]

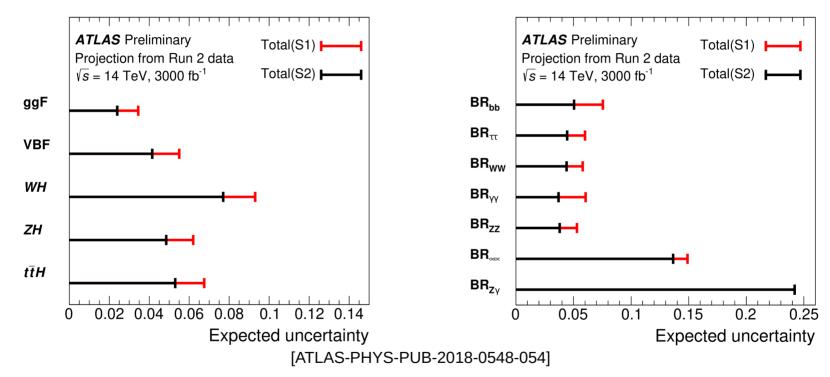
Helicity amplitudes at NLO

[PRELIMINARY]

Next step → combine pT and HE expansions

Conclusions & outlook

- Higgs precision measurements call for improved theoretical predictions
- $2 \rightarrow 2$ processes with **massive** loops are hard to compute
- Analytic approximations are useful: flexibility and efficiency
- pT and high-energy expansions can be combined see also [Davies, Mishima, Schönwald, Steinhauser - 2302.01356]

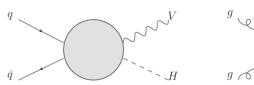

- $gg \rightarrow WW$? How to deal with both heavy and light quarks running in the loops
- EW corrections to 2 → 2 processes? Possibly different master integrals

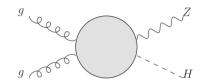
Thank you for your attention

Backup

What next? Projections for High-Luminsoity LHC

Systematic uncertainties will begin to dominate




- Scenario 1: systematics as in Run2 (conservative)
- Scenario 2: exp sys corrected; theo sys halved

VH Production

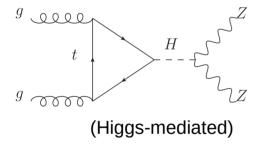
$pp \rightarrow VH$ is the most sensitive process to $H \rightarrow b\overline{b}$ [ATLAS-2007.02873, CMS-1808.08242]

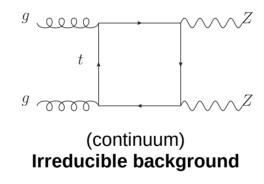
- Two partonic channels in pp->ZH:
 - $q\overline{q} \rightarrow ZH$ dominant contribution
- $gg \rightarrow ZH$ about 6% of $\sigma(pp \rightarrow ZH)$

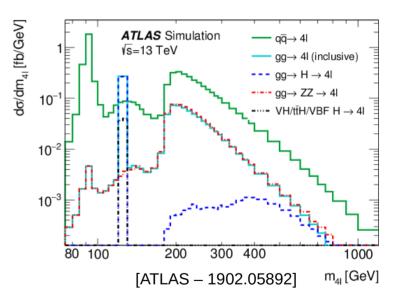
Theory prediction in MC codes:

	[Han, Willenbrock- '91]
$qq \rightarrow ZH$: NNLO accurac	y [Brein, Djouadi, Harlander- 0307206]

 $gg \rightarrow ZH$: LO accuracy \rightarrow Large scale uncertainties

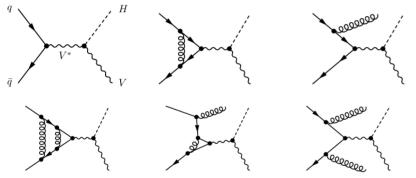

Production mode	$\Delta_y^{< VH>}$	
WH	±0.7%	(No gg-channel for WH)
$q\bar{q} o ZH$	±0.6%	
$gg \rightarrow ZH$	±25%	


[CERN Yellow Report 4]


If we really want to improve the theory prediction we need to go beyond LO in $gg \rightarrow ZH$

ZZ Production

- $pp \rightarrow ZZ$ provides access to **single-Higgs** production via gluon fusion
- $q\bar{q} \to ZZ$ gives dominant contribution to hadronic cross section
- $gg \rightarrow ZZ$ is about 10% of $\sigma(pp \rightarrow ZZ)$

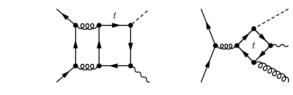

 Knowledge of the background is important for Higgs width determination via off-shell measurements

Theoretical predictions for $pp \rightarrow ZH$

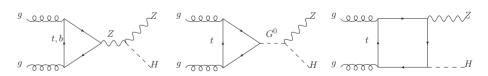
LO: quark-initiated tree-level contribution

QCD Effects: mainly due to Drell-Yan (DY) production followed by $Z^* \rightarrow ZH$ decay

Drell-Yan:

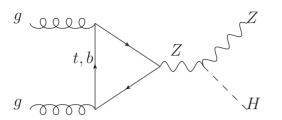


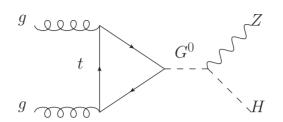
Known through NNLO (O(α_s^2))

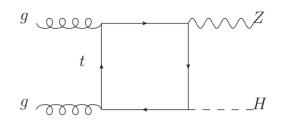

(+30% Wrt LO) [Han, Willenbrock ('91); Hamberg, van Neerven, Matsuura ('92); Brein, Djouadi, Harlander - 0307206]

Non Drell-Yan:

Quark-initiated O(1%) wrt LO [Brein, Harlander, Wiesemann, Zirke - 1111.0761]




Gluon-initiated



• EW corrections: known through NLO (-(5-10%) wrt LO) [Dittmaier et al. - 1211.5015]

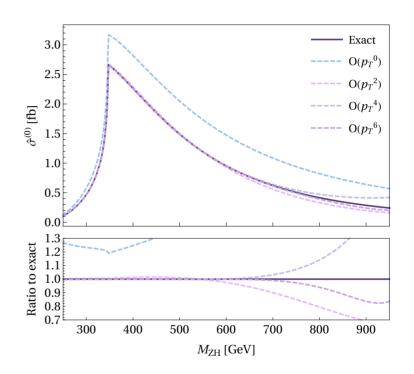
gg → *ZH* @ LO

- Third generation gives dominant contribution [Kniehl ('90) Dicus, Kao ('88)]
- $\mathcal{O}(\alpha_s^2)$ correction to $pp \rightarrow ZH$ cross section
- NNLO suppression wrt to qar q o ZH but gluon luminosity higher at LHC
- Contributes to about 6% of $\sigma(pp \rightarrow ZH)$ for $\sqrt{s} = 14$ TeV

[Cepeda et al. - 1902.00134]

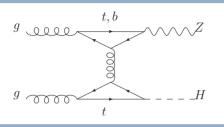
• Only LO included in MC \rightarrow scale variation leads to 25% relative uncertainties

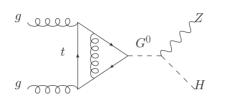
	• •		
\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}$ [pb]	$\Delta_{ m scale}$ [%]	$\Delta_{\mathrm{PDF} \oplus \alpha_{\mathrm{s}}}$ [%]
13 14 27	0.123 0.145 0.526	+24.9 -18.8 $+24.3$ -19.6 $+25.3$ -18.5	4.37 7.47 5.85

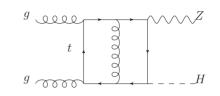

NLO corrections expected to be large in gg processes (e.g. H, HH)

LO Validation

- Three orders sufficient for very good accuracy
- Reliable results for $M_{ZH} \lesssim 700 \text{ GeV}$
- For $M_{ZH} \gtrsim 700~{
 m GeV}$ the assumption

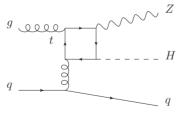

$$p_T^2 \ll 4m_t^2$$


can be violated \Rightarrow the p_T expansion **diverges** (but wait a few slides...)



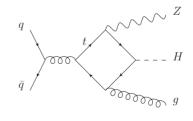
$gg \rightarrow ZH$ @ NLO in QCD: all ingredients

Virtual corrections ($2 \rightarrow 2$, two loops): merging pt+HE expansions


Real emission (2 → 3, one loop): automated evaluation (RECOLA2, MadGraph5)

We included all diagrams that:

• give $O(\alpha_s^3)$ contribution to the cross section pp->ZH



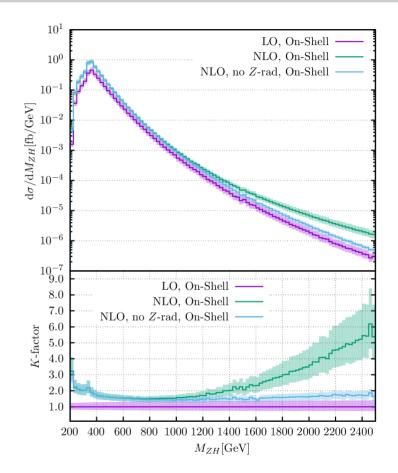
gg → ZHg

[Denner, Lang, Uccirati - 1711.07388] [Alwall et al. - 1405.0301]

• feature a closed fermion loop

$$qq \rightarrow ZHg$$

Full NLO QCD Results


Inclusive cross section

Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO}/\sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$	_	$118.6^{+16.7\%}_{-14.1\%}$	_	1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

- Top mass renormalized both in OS and \overline{MS} scheme
- NLO corrections are the same size as LO $(K\sim2)$
- Scale uncertainties reduced by 2/3 wrt LO
- Agreement with independent calculations
 [Wang et al. 2107.08206] [Chen et al. 2204.05225]

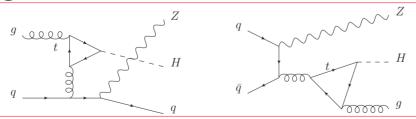
M_{ZH} distribution

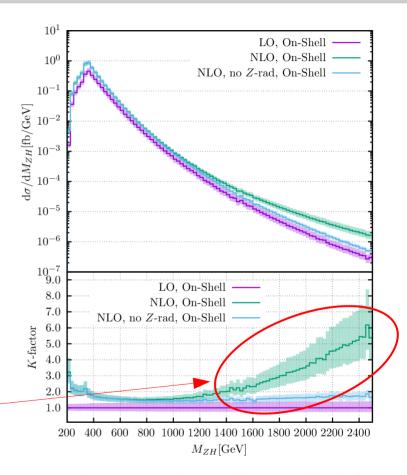
- K-factor is not flat over $M_{\it ZH}$ range
- Large NLO enhancement in the high-energy tail ($M_{\it ZH}$ >1 TeV)

[Degrassi, Gröber, MV, Zhao - 2205.02769]

Full NLO QCD Results

Inclusive cross section

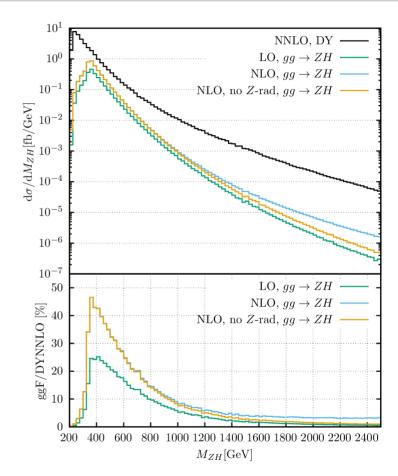

Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO}/\sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$	_	$118.6^{+16.7\%}_{-14.1\%}$	_	1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10


- Top mass renormalized both in OS and $\overline{\text{MS}}$ scheme
- NLO corrections are the same size as LO (K~2)
- Scale uncertainties reduced by 2/3 wrt LO
- Agreement with independent calculations [Wang et al. - 2107.08206] [Chen et al. - 2204.05225]

Z-radiated diagrams

Large EW Logs?

$$\log^2\left(\frac{m_Z^2}{M_{ZH}^2}\right)$$

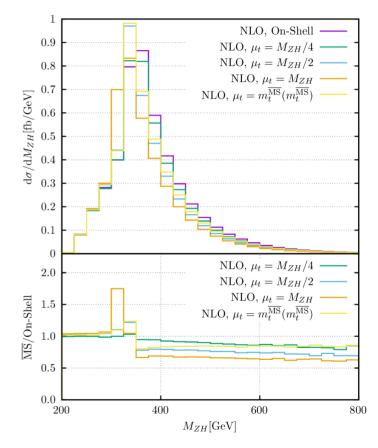


[Degrassi, Gröber, MV, Zhao - 2205.02769]

$gg \rightarrow ZH$ @ NLO: comparing with Drell-Yan contribution

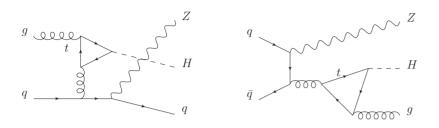
- $gg \rightarrow ZH$ is almost 50% of DY near $M_{ZH} \sim 2 m_t$
- Because of Z -radiated diagrams the gg contribution falls off as rapidly as the DY one (ratio constant at ~ 2%)
- DY obtained using vh@nnlo [Harlander et al 1802.04817]

[Degrassi, Gröber, MV, Zhao - 2205.02769]

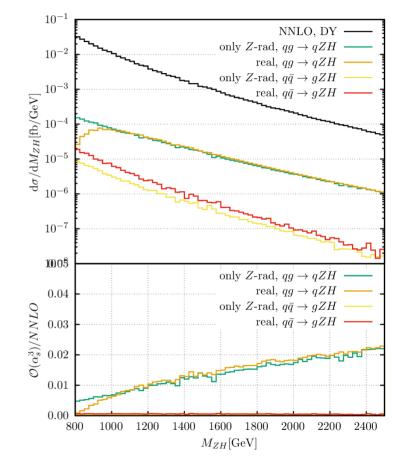

$gg \rightarrow ZH$ @NLO QCD - Top mass schemes

- Take deviations of MS scheme wrt OS result as top mass scheme uncertainty (used for HH production in [Baglio et al. - 1811.05692, 2003.03227])
- Analytic results → change of top mass scheme is straightforward

$$F_i^{NLO,\overline{\rm MS}} = F_i^{NLO,\rm OS} - \frac{1}{4} \frac{\partial F_i^{LO}}{\partial m_t^2} \Delta_{m_t^2} \qquad \Delta_{m_t^2} = 2m_t^2 C_F \left[-4 + 3\log\left(\frac{m_t^2}{\mu^2}\right) \right]$$


Avoid overestimate of mt uncertainty

Bin Width [GeV]	LO	NLO
1	$64.01^{+15.6\%}_{-35.9\%}$	$118.6^{+17.2\%}_{-27.0\%}$
5	$64.01^{+15.3\%}_{-35.6\%}$	$118.6^{+14.7\%}_{-24.9\%}$
$\frac{25}{2}$	$64.01^{+14.0\%}_{-33.1\%}$	$118.6^{+10.9\%}_{-20.8\%}$
100	$64.01^{+2.0\%}_{-25.3\%}$	$118.6^{+0.6\%}_{-13.7\%}$
∞	$64.01^{+0\%}_{-23.1\%}$	$118.6^{+0\%}_{-12.9\%}$

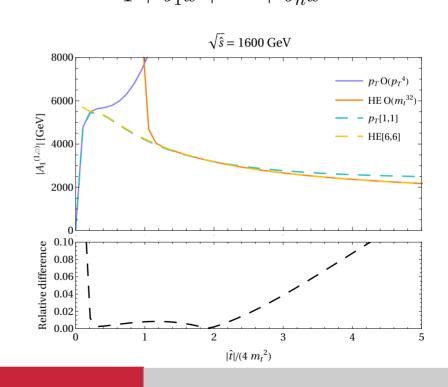

[Degrassi, Gröber, MV, Zhao - 2205.02769]

The effect of Z-radiated diagrams

In the high-energy tail (M_{ZH} > 1 TeV)

- qg → ZHq channel
 - Z-radiated diagrams dominate
 - Non-negligible contribution (up to 2% wrt DY)
- $q\overline{q} \rightarrow ZHg$ channel
 - Z-radiated diagrams dominate
 - Negligible (PDF suppression)

[Degrassi, Gröber, MV, Zhao - 2205.02769]


Merging pT and HE expansions at NLO

Improve the convergence of a series expansion by matching the coefficients of the **Pade approximant** [m/n] [e.g. Fleisher, Tarasov ('94)]

$$f(x) \stackrel{x \to 0}{\simeq} c_0 + c_1 x + \dots + c_q x^q$$
 $f(x) \simeq [m/n](x) = \frac{a_0 + a_1 x + \dots + a_m x^m}{1 + b_1 x + \dots + b_n x^n}$ $(q = m + n)$

[Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225]

- For each FF we merged the following results
 - pT exp improved by [1/1] Padé
 - HE exp improved by [6/6] Padé
- Padé results are stable and comparable in the region $|\hat{t}| \sim 4 m_t^2 \rightarrow \text{can switch without loss of accuracy (% level or below)}$
- Evaluation time for a phase-space point below $0.1 s \Rightarrow$ suitable for Monte Carlo

Integration-by-Parts Reduction

Express a scalar integral as a function of denominator exponents

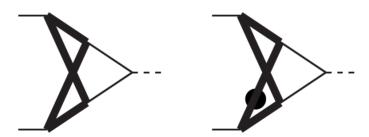
$$I(n_1, \dots, n_N) = \int d^D k_1 \cdots d^D k_L \frac{1}{D_1^{n_1} \cdots D_N^{n_N}} \qquad (n_i \in \mathbb{Z})$$

Recurrence relations connecting scalar integrals with different n_i from differentiation

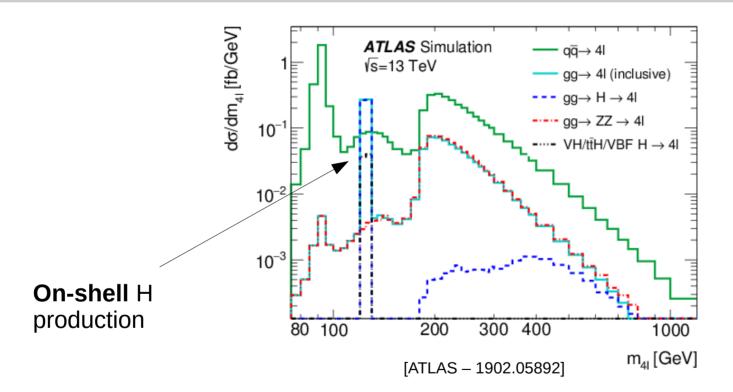
$$\int d^D k_1 \cdots d^D k_L \frac{\partial}{\partial k_i^{\mu}} \frac{q_j^{\mu}}{D_1^{n_1} \cdots D_N^{n_N}} = 0$$

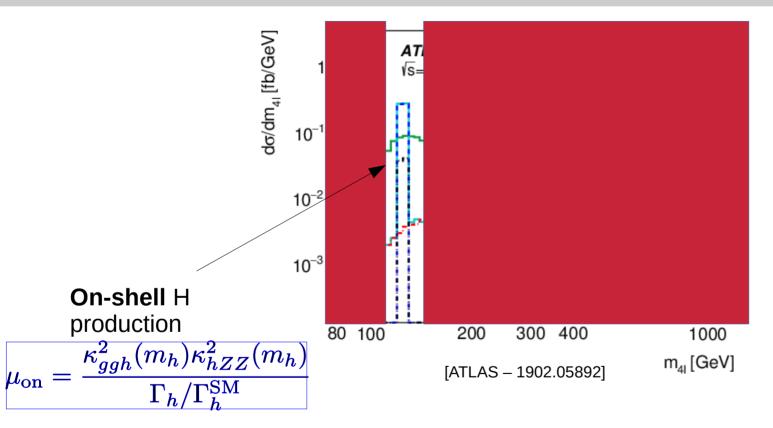
The process can be **iterated** \Rightarrow each scalar integral in the amplitude can be decomposed along a basis of master integrals

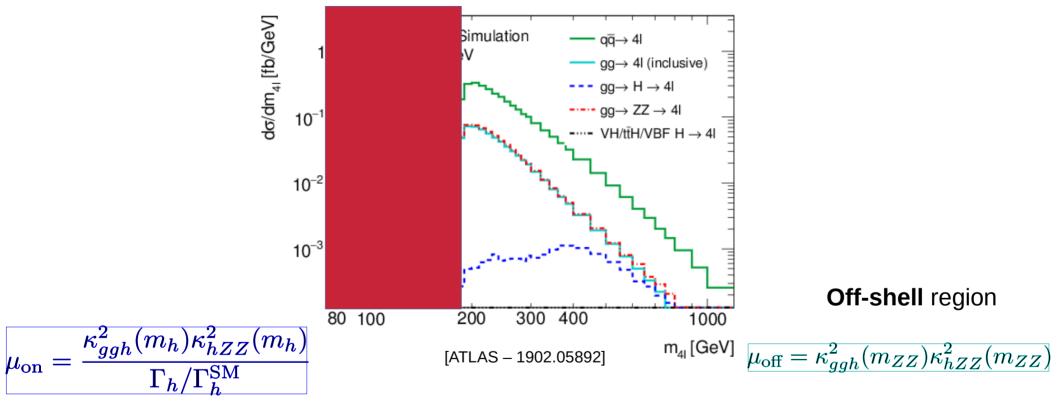
$$I(n_1, \dots, n_N) = \sum_j C^{(j)} M I^{(j)}(\mathbf{z_1}, \dots, \mathbf{z_N}) \qquad z_i \in \{0, 1, 2\}$$

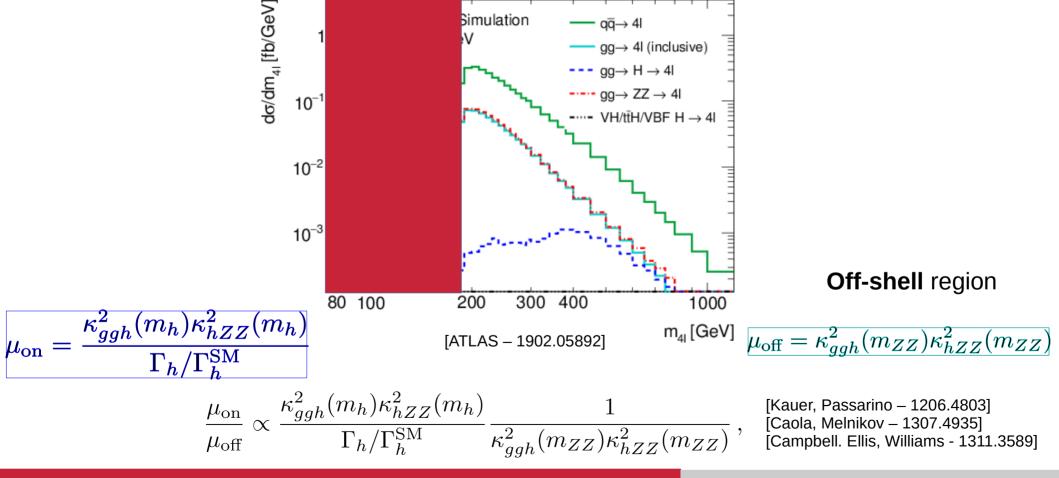

- For $gg \rightarrow ZH$ @ NLO: from ~200.000 scalar integrals to 52 MIs
- First simplification with pT expansion \Rightarrow simpler IBP \Rightarrow simpler MIs

Master Integrals

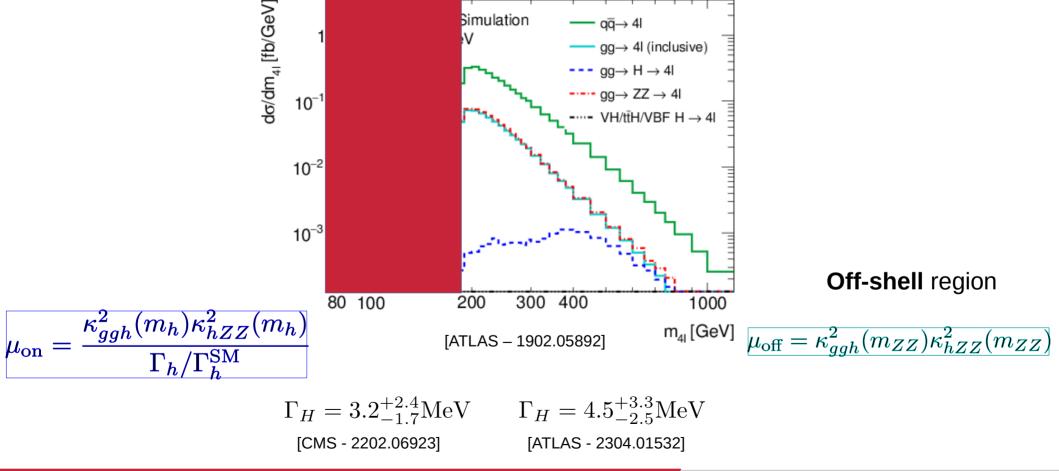

52 MIs already known in the literature SAME MIs FOR $gg \rightarrow HH$, $gg \rightarrow ZH$, $gg \rightarrow ZZ$


- 50 MIs expressed in terms of Generalized Polylogarithms (GPLs)


 [Bonciani, Mastrolia, Remiddi ('03) Aglietti et al. ('06) Anastasiou et al. ('06) Caron-Huot, Henn ('14) Becchetti, Bonciani ('17) Bonciani, Degrassi, Vicini ('10)]
- Two elliptic integrals [von Manteuffel, Tancredi ('17)]
 Semi-analytical evaluation implemented in FORTRAN routine
 [Bonciani, Degrassi, Giardino, Gröber ('18)]

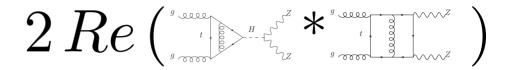


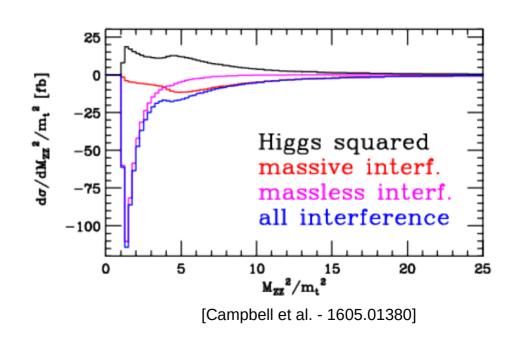
$pp \rightarrow ZZ$



Simulation

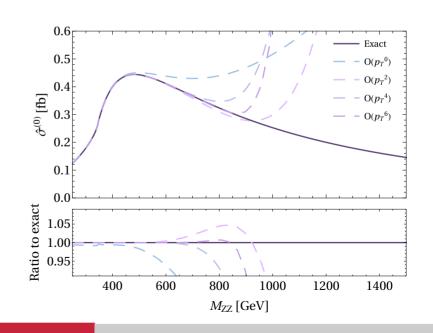
 $q\bar{q} \rightarrow 4l$




Interference @ NLO: massless vs massive

Two-loop boxes are a problem (again)

- Light-quark (~massless) known fully analytically [Caola et al. - 1509.06734]
- Heavy quarks
- → Exact numerical results available [Agarwal, Jones, von Manteuffel - 2011.15113; Brønnum-Hansen, Wang - 2101.12095]
- Analytic approximations:
 - **-LME** [Melnikov, Dowling 1503.01274 ; Gröber, Maier, Rauh 1605.04610]
 - -High-energy exp [Davies et al. 2002.05558]


$$m_Z^2 \ll m_t^2 \ll \hat{s}, \hat{t}$$

p_T expansion for $gg \rightarrow ZZ$

- More involved Lorentz structure → 16 form factors
- More involved intermediate expressions
- ~ 750.000 scalar integrals per form factor
- IBP leads to same 52 MIs as HH and ZH
- Permille accuracy at LO with three orders

