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In the first part of the talk we briefly explain our computation of the renormalization-group (RG)
improved generating functional of twist-2 operators with maximal spin projection on the P+
light-cone direction in pure SU(N) Yang-Mills theory [3].

3 Steps:

1) Computation of the lowest-order conformal generating functional as the logarithm of a funcional
determinant [1][3]

2) Construction of a renormalization scheme where the operators become multiplicatively
renormalizable [2][3]

3) RG improvement of the Euclidean conformal generating functional [3]

In the second part we discuss the non-perturbative interpretation of our results in the large-N
expansion of Yang-Mills theory [4].



Yang-Mills theory is conformal to order go(leading order) and also 92 (next-to-leading) of
perturbition theory (as the beta function enters the solution of the Callan-Symanzik equation to
order g~).

Twist-2 operators transform to the leading order as primary operators with respect to the conformal

group [5]

_ <= <=
@21_2% = Tr F’L;)l D pg + D Ps—les),u — traces  Generalization of the stress-energy tensor
<= <=
D

—— - )
0, 5. =Tr F(p1 s traces

L = g L
=Tr (F,o +iFu0) Dy ... Dy, (F)e +iFy),) — traces

. D Ps—lFPS)N

ST =2
UVPL...Ps— 2O

07=2 are the "balanced” operators that appear as leading terms in the OPE of tensor currents in
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These operators can be projected onto the + light-cone direction and have nice transformation properties with
respect to the collinear conformal subgroup.

In the light-cone gauge they are exactly bilinear and take the form [6][3]
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where s is the collinear spin, i.e. the eigenvalue of the spin operator along the light-cone direction and
5

C? 5 are the Gegenbauer polynomials, which are a special case of the Jacobi polynomials.

[6] V. M. Braun, G. P. Korchemsky and D. Mueller, The Uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311-398, [hep-ph/0306057].



Step 1

We have pointed out [3] that the above operators are quadratic to all orders of perturbation theory in the

light-cone gauge. Hence, we have computed their generating functional as a Gaussian functional integral from
the definition of the Yang-Mills theory in the light-cone gauge to the lowest order 3]
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For simplicty we only report in the present talk the generating functional of the even-spin balanced
operators [3]. The conformal result is
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Step 2

Defining (O, (1) ... O, (2n)) = Gy 4 (21, 2 1 g(1))

in general, the above operators mix with derivatives of lower spin operators of twist-2.
As a consequence we get from the Callan-Symanzik equation the corresponding UV asymptotics for A — 0

Gy O, A g(1) ~ Y Zigpy (N e Za g (W) AT Z Do) ()

provided that G ()

. . (x1,...,2,) (which can be computed at the lowest order of perturbation theory) is not zero.
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The idea in [2] is to find a (formal) holomorphic transformation depending on the coupling that defines a finite change
of renormalization scheme

In [2] it demonstrated that under the so called “non-resonant” condition / ( )\) is diagonalizable and it is one loop
exact to all orders of perturbation theory and its eigenvalues take the form
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Since, for twist-2 operators in SU(N) Yang-Mills theory the non-resonant condition is verified [8][3] then the
UV asymptotics is greatly simplified
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expansion of QCD-like theories, [2105.11262].



Step 3

It follows the RG-improved Euclidean generating functional of the even-spin balanced (rescaled so that the 2-point
correlators are of order 1 for large N) operators in the non-resonant diagonal renormalization scheme [3]
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Large-N generating functional

In the ‘t Hooft large-N expansion, Feynmann diagrams -in the double line representation- are topologically
equivalent to closed Riemann surfaces (with punctures).

Then, the perturbative series can be rearranged so that the topologically equivalent contributions are resummed
together.

Therefore, our generating functional should be interpreted as a sum of topologically distinct terms
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where n stands for the number of operator insertions and the ellipses for higher-genus contributions.

Graphically,
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Large-N generating functional

Explictly, asymptotically
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Non-perturbative interpretation of the large-N generating functional

Yang-Mills theory in the large-N expansion should be interpreted as a theory of an infinite number of weakly
interacting glueballs, with interaction of order 1/N.
The generating functional reads schematically
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where * stands for a presently unkown algebraic structure on the glueball fields.

Hence, the connected generating functional reads
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The minus sign in front of the logDet in Wgyeban|j| arises from the spin-statistics theorem, since all the
gauge-invariant glueball interpolating fields have integer spin, and thus the glueballs should be bosons
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Remarkably, our asymptotic result reproduces the logDet structure of the glueball one-loop generating functional
Yet, surprisingly, the sign is the opposite of what would follow from the spin-statistics theorem
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The aim of this talk is to solve the above sign puzzle.



One of the hypotheses of the spin-statistics theorem is that there must be a finite number of fields. Indeed, in
theories where there is an infinite number of fields several counterexamples to the theorem are known.

These counterexamples are based on massive infinite dimensional representations of the Lorentz group. For
instance, in [9] examples are constructed of theories with an infinite number of integer-spin fields where fermionic
statistics must be imposed in order to ensure positivity of the energy.

Conversely, there are examples of fields with half-integer spins that require bosonic quantization [9][10][11][12].

A significant issue with this hypothetical way out of the sign puzzle is that the aforementioned infinite-
dimensional representations of the Lorentz group have infinite mass degeneracy. Namely, the fields constructed by
means of these representations decompose —according to the Wigner theorem- into the sum of irreducible
representations of the Poincaré group corresponding to an infinite number of particles of any spin, all having the
same mass.

This would correspond to vertical Regge trajectories that is not acceptable in large-N Yang—Mills theory, as

evidence from lattice calculations shows [13] 5 - -
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We have found a different way out of the sign puzzle: The ‘t Hooft topological expansion must be refined
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To understand where the extra topologies come from, we need to recall the proof of the ‘t Hooft topological
expansion.

In SU(N) Yang-Mills theory the color dependence of the propagator has a leading and subleading contribution
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In the double line representation [14][15]
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[14] M. Marino, Instantons and Large N: An Introduction to Non-Perturbative Methods in Quantum Field Theory,' Cambridge University Press, 2015.
[15] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color Flow Decomposition of QCD Amplitudes, Phys. Rev. D 67 (2003), [hep-ph/0209271].




The vertices of the Lagrangian are V3 o< ifabc and V), o g—fabldel X V2

VN

They can be drawn as [14]
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The subleading part of the propagator does not contribute when attached to the vertices of the Lagrangian. Indeed,
the subleading part of the propagator corresponds to the subtraction of a U(1) factor, while the vertices are purely
nonabelian. Graphically
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Therefore, the topology of vacuum-vacuum diagrams corresponds to the ‘t Hooft original identification in the double
line representation [14]. The same holds for all the gluon composite operators (in the adjoint representation) whose
local vertices are proportional to the product of some f*’°[15].

We conclude that in these cases we may drop the subleading contribution to the propagator and the proof of ‘t Hooft
theorem that holds for U(N) also holds for SU(N) [14][15].



Yet, we point out that the above proof does not apply to the 2-gluon operators -for example, our twist-2 operators in
the light-cone gauge. Indeed, even in the adjoint representation, their local vertex involves 5% as opposed to fab?

As a consequence, when the subleading part of the propagator is attached to the local vertex, a nonzero contribution
is obtained.

Equivalently, in the SU(N) theory we may keep only the leading part of the propagator -in order to maintain the
‘t Hooft double line representation- provided that we project the above operators on their traceless part
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Hence, the 2-gluon operators can be represented as a 2-point vertex with a subleading contribution
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while keeping the propagator in the standard double line representation




This subleading contribution to the operator vertex gives rise to new topologies. To see this we consider the color
structure of the 2-point correlator of twist-2 operators to the leading perturbative order
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Hence, new planar subleading diagrams arise -in addition to first one above- corresponding to possibly color-
disconnected (but space-time connected) punctured disks. Following ‘t Hooft prescription the first one corresponds
to a punctured sphere
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while we have identified the topology of the remaining ones by requiring that their Euler characteristic matches the
correct 1/N dependence and that they remain planar and possibly color-disconnected.



Hence, our refined topological expansion of the one-loop generating functional of twist-2 operators reads:

Wl—loop:; .++ +§%

Remarkably, the torus diagram is corrected by a sum of new possibly color-disconnected objects (but not in space-
time).

Interestingly, the torus contribution is suppressed in perturbation theory with respect to the remaining diagrams,
since the torus inevitably involves the Lagrangian vertices (that carry powers of the coupling), while the remaining
diagrams have no perturbative corrections because they cannot be attached to the Lagrangian vertices as a
consequence of the identity
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We now provide a nonperturbative interpretation of our refined topological expansion in terms of the effective
theory of glueballs. It has been known for more than 40 years that punctured spheres correspond to glueball tree

diagrams [16][17]

[16] A. Migdal, Multicolor QCD as Dual Resonance Theory, Annals Phys. 109 (1977) 365.
[17] E. Witten Baryons in the 1/N expansion, Nucl. Phys. B160 (1979) 57-115.

The sphere with two punctures corresponds to an
infinite sum of glueball propagators [16].

The sphere with three punctures corresponds to
vertices that may carry sums of 3 or 2 poles [17].

We observe that the 2-pole diagram may be interpreted
as the 3-pole one with the insertion of a contact term,
due to composite operators, in place of a propagator [4].
As a consequence, the second diagram contributes zero to
the S matrix [4].



Glueball loops in the effective theory are represented by higher-genus surfaces. Specifically, 2-point glueball one-
loop diagrams correspond to the punctured torus:
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Interestingly, we observe [4] that in the effective theory on the right-hand side of the above picture also diagrams
without external glueball legs occur. Moreover, for our new topologies we obtain the following interpretation
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The punctures on the boundary of the cylinder
Q + are identified in spacetime and cannot represent
an external glueball leg. Consequently, both
diagrams contribute zero to the S matrix as well.

The maximally color-disconnected diagrams are the only ones that have a
1-to-1 correspondence with the effective theory, since they do not carry any
external leg.



From the point of view of the effective theory, its not obvious how to sum on the number of insertions of external tree
diagrams on the glueball loop, over which we have no explicit control -for example, :> oN

but for the maximally color-disconnected diagrams, which only carry the insertion of contact terms in the effective
theory.

Indeed, the only contribution that it is easy to resum is the maximally color-disconnected one, which is one loop in
space-time
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Remarkably, by direct evaluation we find that it has the opposite sign with respect to the total result.

Indeed, for example <@S( @ @ +— ﬁ (notice the opposite sign in the last term)

Therefore, perturbatively
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Hence,
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that, though asymptotically conformal, in the SU(N) theory must depend nonperturbatively on the RG—invariant
scale. After the RG-improvement it reads
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that now includes certain contributions from the torus without external legs in the effective theory.

Therefore, the introduction of the extra topologies solves the sign puzzle, in the sense that the only object that we
really know how to resum nonperturbatively carries a sign consistent with the spin-statistics theorem.



Conclusions

In the SU(N) YM theory it is necessary to introduce a new topological sector for twist-2 operators that refines the
‘t Hooft topological expansion, both perturbatively and nonperturbatively.

Instead, in the U(IN) YM theory the new sector is absent perturbatively.

Yet, this would not solve the aforementioned sign problem nonperturbatively, since in the U(N) theory the
asymptotics of the generating functional is the sum of the RG-improved SU(N) result and the free U(1) part
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with the U(1) contribution in the second line being actually exactly conformal and not only asymptotic, since the
U(1) theory is free.

Hence, nonperturbatively -even in the U(IN) theory- the solution of the sign puzzle is the one outlined above in
the SU(N) theory.



The new topological sector dominates the UV of the correlators of twist-2 operators in the SU(N) theory, and its
maximally color-disconnected diagrams can be re-summed asymptotically in the UV into a functional determinant
with the sign agreeing with the spin-statistics theorem.

However, nonperturbatively the entire new sector does not contribute to the S matrix, since in the effective theory it
consists of diagrams with at least one external glueball leg missing.

Hence, by limiting ourselves to the nonperturbative S matrix only, the original ‘t Hooft topological expansion is
complete even for the twist-2 operators.

A crucial consequence is that a canonical string solution matching the topology of closed punctured Riemann surfaces
cannot exist for the Yang-Mills correlators, but it may exist for the S matrix.

Yet, a noncanonical string solution may exist also for the correlators provided that it contains extra couplings to
D-branes [8] ([M.B.] to appear).

Indeed, the existence of the new topological sector that contributes zero to the S matrix, but nontrivially to the
correlators, opens the way to an exact solution limited to the new sector ([M.B.] to appear), since the new sector may
be completely integrable (8] thanks to the vanishing of the S matrix.

[8] M. Bochicchio, An asymptotic solution of large-N QCD, for the glueball and meson spectrum and the collinear S-matrix, HADRON 2015, AIP Conf. Proc. (2016).



BACKUP
Defining
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in general, the above operators mix with derivatives of lower spin operators of twist-2.
As a consequence we get from the Callan-Symanzik equation as A — 0
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The corresponding UV asymptotics for A — 0 is
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provided that ngn firg (@1, 2n), which can be computed at the lowest order of perturbation theory, is not zero.



The idea in [2] is to find a (formal) holomorphic gauge transformation depending on the coupling that defines a
finite change of renormalization scheme

Under the above gauge transformation — 29 _ 1 (20 . S~ 20 ) transforms as a gauge connection with a pole at
Bl9) ~ 9\ Bo /
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In [2] it demonstrated, by means of the Poincaré-Dulac theorem, that under the “non-resonant” condition
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Besides, if Y0 is diagonalizable, Z ()\) is diagonalizable as well with eigenvalues Zo, () =



The minus sign in front of the logDet in Wayeban|j| arises from the spin-statistics theorem, since all the
gauge-invariant glueball interpolating fields have integer spin, and thus the glueballs should be bosons.

The corresponding glueball one-loop effective action, I'glueball[¢] = / J * & — Walueball[j], reads [§]

1
Lglueball |¢@ /qb* A+M2 ¢+N3'/¢*q§ O+ — logDet(( A+M2)+N*¢*+”'> + ...

From the perspective of the ‘t Hooft expansion, the one-loop part of the glueball effective action can be thought of
as being the nonperturbative resummation -involving Ay s that all the glueball masses must be proportional to-
of the sum of the amputated punctured toruses.

[8] M. Bochicchio, An asymptotic solution of large-N QCD, for the glueball and meson spectrum and the collinear S-matrix, HADRON 2015, AIP Conf. Proc. (2016).



This subleading contribution to the operator vertex gives rise to new topologies. To see this we consider the color
structure of the 2-point correlator of twist-2 operators to the leading perturbative order
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Hence, new planar subleading diagrams arise -in addition to first one above- corresponding to possibly color-

disconnected (but space-time connected) punctured disks. Following ‘t Hooft Drescrmtlon the first one corresponds
to a punctured sphere

(0s(2)0s

while we have identified the topology of the remaining ones by requiring that their Euler characteristic matches the
correct 1/N dependence and that they remain planar and possibly color-disconnected.

Indeed, we have identified the doubly punctured disk with an infinite strip. Then, we have glued the two sides of the
infinite strip, but in the neighborhood of infinity, to get a cylinder with punctures on the boundaries.

Had we glued the sides also in the neighborhood of infinity, we would have gotten a 2-punctured sphere whose Euler

characteristic does not match the correct 1/N counting. Besides, the propagator associated to the sphere, instead of the
punctured cylinder above, would not reproduce the correct UV asymptotics.



Nonperturbatively, we may take into account the occurrence of contact terms in the external legs by introducting in
the generating functional a new source j’ coupled to the equations of motion
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Diagrammatically,
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Color structure of the propagator in double line representation (4, (z)4u(y)) = — % <5il5jk: B % 5 5lk> Oz — y)
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The generating functional of twist-2 operators in SU(N) Yang-Mills can be written as the generating functional of
the constrained U(N) theory
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We write the projected conformal generating functional for even-spin balanced operators
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where we have dropped the subleading term P in the propagator, since once we have the operators projected on the
constraint we can use the fact that P-D = 0.



The connected generating functional of the rescaled operators reads
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which can be written as the sum of a planar term and the sum of the possibly disconnected new topologies
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By dropping the inverse term, the maxiammly disconnected piece reads
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We can recover the explicit color dependence by using the properties of P and of the identity, namely
pP"=P
TrP=1

Trl = N?



