Francesco Sanfilippo, INFN Roma Tre XXXVII Convegno Nazionale di Fisica Teorica 27-29 Sept 2023

Parametrization of the interaction of a Muon with an external magnetic field

$$
\mu=g \frac{e}{2 m} S
$$

Parametrization of the interaction of a Muon with an external magnetic field

$$
\mu=g \frac{e}{2 m} S
$$

Giromagnetic factor g : relation to the particle spin S
Proton $g_{p}=5.5856946893$
Neutron $\quad g_{n}=-3.82608545$
Electron $g_{e}=-2.00231930436256$
Muon $g_{\mu}=-2.0023318418$

Parametrization of the interaction of a Muon with an external magnetic field

$$
\mu=g \frac{e}{2 m} S
$$

Giromagnetic factor g : relation to the particle spin S

$$
\begin{aligned}
\text { Proton } & g_{p}=5.5856946893 \\
\text { Neutron } & g_{n}=-3.82608545 \\
\text { Electron } & g_{e}=-2.00231930436256 \\
\text { Muon } & g_{\mu}=-2.0023318418
\end{aligned}
$$

Pointlike particles: $g=2$ Dirac equation 1928

Loop corsection to g=?

Vacuum polarization renormalizes g

$$
a=\frac{g-2}{2}
$$

Anomalous magnetic moment

Loop cossection to g=?

Vacuum polarization renormalizes g

$$
a=\frac{g-2}{2}
$$

Anomalous magnetic moment

... and possibly, any sort of unknown particle

Loop cossection to g=2

Vacuum polarization renormalizes g

$$
a=\frac{g-2}{2}
$$

Anomalous magnetic moment

... and possibly, any sort of unknown particle
Measure precisely $a \rightarrow$ probe completeness of the Standard Model

 electron : $\quad a_{e}=0.00115965218073$ muon : $\quad a_{\mu}=0.00116592089$tau: $\quad a_{\tau}=0$

Thes andunalobs magnetic monent of leptons

$$
\begin{aligned}
\text { electron : } & a_{e}=0.00115965218073 \\
\text { muon : } & a_{\mu}=0.00116592089 \\
\text { tau : } & a_{\tau}=0
\end{aligned}
$$

Electron is stable: 1000 times more precise than muon

$$
\begin{aligned}
\text { electron : } & a_{e}=0.00115965218073 \\
\text { muon : } & a_{\mu}=0.00116592089 \\
\text { tau : } & a_{\tau}=0
\end{aligned}
$$

Electron is stable: 1000 times more precise than muon
It also need small-size apparatus for measurement

$$
\begin{aligned}
\text { electron : } & a_{e}=0.00115965218073 \\
\text { muon : } & a_{\mu}=0.00116592089 \\
\text { tau : } & a_{\tau}=0
\end{aligned}
$$

Electron is stable: 1000 times more precise than muon
It also need small-size apparatus for measurement
Why not studying the electron?

$$
\begin{aligned}
\text { electron : } & a_{e}=0.00115965218073 \\
\text { muon : } & a_{\mu}=0.00116592089 \\
\text { tau : } & a_{\tau}=0
\end{aligned}
$$

Electron is stable: 1000 times more precise than muon
It also need small-size apparatus for measurement
Why not studying the electron?
Simple dimensional analysis: $a_{\ell}^{N P} \sim \kappa m_{\ell}^{2} / m_{N P}^{2}$

electron : $\quad a_{e}=0.00115965218073$
 muon : $\quad a_{\mu}=0.00116592089$
 tau: $\quad a_{\tau}=0$

Electron is stable: 1000 times more precise than muon
It also need small-size apparatus for measurement
Why not studying the electron?
Simple dimensional analysis: $a_{\ell}^{N P} \sim \kappa m_{\ell}^{2} / m_{N P}^{2}$
Muon wins over electrons by a factor $m_{\mu}^{2} / m_{e}^{2} \sim 43000$

electron : $\quad a_{e}=0.00115965218073$
 muon : $\quad a_{\mu}=0.00116592089$
 tau: $\quad a_{\tau}=0$

Electron is stable: 1000 times more precise than muon
It also need small-size apparatus for measurement
Why not studying the electron?
Simple dimensional analysis: $a_{\ell}^{N P} \sim \kappa m_{\ell}^{2} / m_{N P}^{2}$
Muon wins over electrons by a factor $m_{\mu}^{2} / m_{e}^{2} \sim 43000$
Tau would be even better, but decays too fast to measure (but there are ideas)

T'se anconsalobs nsagnecic noment of rnuon

BNL E821 exp. up to 2006

BNL E821 exp. up to 2006

BNL E821 exp. up to 2006

BNL E821 exp. up to 2006

BNL E821 exp. up to 2006

Transfer of the ring to Fermilab

BNL E821 exp. up to 2006

Transfer of the ring to Fermilab

$g_{\mu}-2$ experiment @ Fermilab

BNL E821 exp. up to 2006

Transfer of the ring to Fermilab

$g_{\mu}-2$ experiment @ Fermilab

2023: measurement confirmed

BNL E821 exp. up to 2006

Transfer of the ring to Fermilab

$g_{\mu}-2$ experiment @ Fermilab

2023: measurement confirmed What about the theory?!?

 https://muon-gm2-theory.illinois.edu/Target: match the theory precision \& accuracy with the upcoming g-2 experiment White paper: Physics Reports 887 (2020) 1-166 [arXiv:2006.04822]

Regular meetings: latest in Bern, 4-8 September 2023

The anomalous magnetic moment of the muon in the Standard Model
T. Aoyama ${ }^{1,2,3}$, N. Asmussen ${ }^{4}$, M. Benayoun ${ }^{5}$, J. Bijnens ${ }^{6}$, T. Blum ${ }^{7,8}$, M. Bruno ${ }^{9}$, I. Caprini ${ }^{10}$ C. M. Carloni Calame ${ }^{11}$, M. Cè ${ }^{9,12,13}$, G. Colangelo ${ }^{\dagger 14}$, F. Curciarello ${ }^{15,16}$, H. Czyż ${ }^{17}$, I. Danilkin ${ }^{12}$, M. Davier ${ }^{\dagger 18}$ C. T. H. Davies ${ }^{19}$, M. Della Morte ${ }^{20}$, S. I. Eidelman ${ }^{\dagger 21,22}$, A. X. El-Khadra ${ }^{\dagger 23,24}$, A. Gérardin ${ }^{25}$, D. Giusti ${ }^{26,27}$ M. Golterman ${ }^{28}$, Steven Gottlieb ${ }^{29}$, V. Gülpers ${ }^{30}$, F. Hagelstein ${ }^{14}$, M. Hayakawa ${ }^{31,2}$, G. Herdoíza ${ }^{32}$, D. W. Hertzog ${ }^{33}$ A. Hoecker ${ }^{34}$, M. Hoferichter ${ }^{\dagger 14,35}$, B.-L. Hoid ${ }^{36}$, R. J. Hudspith ${ }^{12,13}$, F. Ignatov ${ }^{21}$, T. Izubuchi ${ }^{37,8}$, F. Jegerlehner ${ }^{38}$. L. Lellouch 25 I. Logashenko ${ }^{21}$, B. Malaescu ${ }^{5}$, K. Maltman ${ }^{44,45}$, M. Kupsc Marinković ${ }^{46,47}$, P. Masjuanne ${ }^{48,49}$ L. Lellouch ${ }^{25}$, I. Logashenko ${ }^{21}$, B. Malaescu ${ }^{5}$, K. Maltman ${ }^{44,45}$, M. K. Marinkovi chen 46,47, P. Masjuan ${ }^{48,49}$
A. S. Meyer ${ }^{37}$, H. B. Meyer ${ }^{12,13}$, T. Mibe ${ }^{\dagger 1}$, K. Miura ${ }^{12,13,3}$, S. E. Müller ${ }^{50}$, M. Nio ${ }^{2,51}$, D. Nomura ${ }^{52,53}$,
A. Nyffeler ${ }^{\dagger 12}$, V. Pascalutsa ${ }^{12}$, M. Passera ${ }^{54}$, E. Perez del Rio ${ }^{55}$, S. Peris ${ }^{48,49}$, A. Portelli ${ }^{30}$, M. Procura ${ }^{56}$,
C. F. Redmer ${ }^{12}$, B. L. Roberts ${ }^{\dagger 57}$, P. Sánchez-Puertas ${ }^{49}$, S. Serednyakov ${ }^{21}$, B. Shwartz ${ }^{21}$, S. Simula ${ }^{27}$, D. Stöckinger ${ }^{58}$, H. Stöckinger-Kim ${ }^{58}$, P. Stoffer ${ }^{59}$, T. Teubner ${ }^{\dagger 60}$, R. Van de Water ${ }^{24}$, M. Vanderhaeghen ${ }^{12,13}$ G. Venanzoni ${ }^{61}$, G. von Hippel ${ }^{12}$, H. Wittig ${ }^{12,13}$, Z. Zhang ${ }^{18}$
M. N. Achasov ${ }^{21}$, A. Bashir ${ }^{62}$, N. Cardoso ${ }^{47}$, B. Chakraborty ${ }^{63}$, E.-H. Chao ${ }^{12}$, J. Charles ${ }^{25}$, A. Crivellin ${ }^{64,6 .}$. O. Deineka ${ }^{12}$, A. Denig ${ }^{12,13}$, C. DeTar ${ }^{66}$, C. A. Dominguez ${ }^{67}$, A. E. Dorokhov ${ }^{68}$, V. P. Druzhinin ${ }^{21}$, G. Eichmann ${ }^{69,47}$,
M. Fael ${ }^{70}$, C. S. Fischer ${ }^{71}$, E. Gámiz ${ }^{72}$, Z. Gelzer ${ }^{23}$, J. R. Green ${ }^{9}$, S. Guellati-Khelifa ${ }^{73}$, D. Hatton ${ }^{19}$
N. Hermansson-Truedsson ${ }^{14}$, S. Holz ${ }^{36}$, B. Hörz ${ }^{74}$, M. Knecht ${ }^{25}$, J. Koponen ${ }^{1}$, A. S. Kronfeld ${ }^{24}$, J. Laiho ${ }^{75}$,
S. Leupold ${ }^{42}$, P. B. Mackenzie ${ }^{24}$, W. J. Marciano ${ }^{37}$, C. McNeile ${ }^{76}$, D. Mohler ${ }^{12,13}$, J. Monnard ${ }^{14}$, E. T. Neil ${ }^{17}$
A. V. Nesterenko ${ }^{68}$, K. Ottnad ${ }^{12}$, V. Pauk ${ }^{12}$, A. E. Radzhabov ${ }^{78}$, E. de Rafael ${ }^{25}$, K. Raya ${ }^{79}$, A. Risch ${ }^{12}$, A. Rodríguez-Sánchez ${ }^{6}$, P. Roig ${ }^{80}$, T. San José ${ }^{12,13}$, E. P. Solodov ${ }^{21}$, R. Sugar ${ }^{81}$, K. Yu. Todyshev ${ }^{21}$, A. Vainshtein ${ }^{82}$ A. Vaquero Avilés-Casco ${ }^{66}$, E. Weil ${ }^{71}$, J. Wilhelm ${ }^{12}$, R. Williams ${ }^{11}$, A. S. Zhevlakov ${ }^{88}$

Electroyeals contributions

T. Aoyama, M. Hayakawa,
T. Kinoshita, M. Nio
[PRLs, 2012]

Electroyeals contributions

T. Aoyama, M. Hayakawa,
T. Kinoshita, M. Nio
[PRLs, 2012]

Computed up to $5^{\text {th }}$ order!!!
~10000 diagrams

Lignts-by-lignt contribution

- Related to two-photons scattering
- Nasty hadronic contribution
- Long distance effects hard to compute
- Nonperturbative contribution

Lightion-lignt contribution

- Related to two-photons scattering
- Nasty hadronic contribution
- Long distance effects hard to compute
- Nonperturbative contribution

Dispersive approach

[several contributions put together]

Lights-by-lignt contribution

- Related to two-photons scattering
- Nasty hadronic contribution
- Long distance effects hard to compute
- Nonperturbative contribution

Dispersive approach

[several contributions put together]

- Tiny, but model-dependent

Lights-by-lignt contribution

- Related to two-photons scattering
- Nasty hadronic contribution
- Long distance effects hard to compute
- Nonperturbative contribution

Dispersive approach

(a)

(b)

(c)

$$
a_{\mu}^{l b l, h a d}=92(19) \cdot 10^{-11}
$$

[several contributions put together]

- Tiny, but model-dependent
? Size comparable to the full HVP error...

Lights-by-lignt contribution

- Related to two-photons scattering
- Nasty hadronic contribution
- Long distance effects hard to compute
- Nonperturbative contribution

Dispersive approach

$$
a_{\mu}^{l b l, h a d}=92(19) \cdot 10^{-11}
$$

[several contributions put together]

Lattice calculations

[RBC/UKQCD coll, PRL 124, 2020]

- Tiny, but model-dependent
? Size comparable to the full HVP error...

Lights-by-lignt contribution

- Related to two-photons scattering
- Nasty hadronic contribution
- Long distance effects hard to compute
- Nonperturbative contribution

Dispersive approach

$$
a_{\mu}^{l b l, h a d}=92(19) \cdot 10^{-11}
$$

[several contributions put together]

- Tiny, but model-dependent

Lattice calculations

[RBC/UKQCD coll, PRL 124, 2020]

- First principle calculation
? Size comparable to the full HVP error...

Lights-by-lignt contribution

- Related to two-photons scattering
- Nasty hadronic contribution
- Long distance effects hard to compute
- Nonperturbative contribution

Dispersive approach

$$
a_{\mu}^{l b l, h a d}=92(19) \cdot 10^{-11}
$$

[several contributions put together]

- Tiny, but model-dependent
? Size comparable to the full HVP error...

Lattice calculations

[RBC/UKQCD coll, PRL 124, 2020]

- First principle calculation
\square Larger error, but validates model
faclrontic vactulas polarizetion

fanclrontic vacudus polarization

$a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]$
analytic kernel vectorial polarization

Vector Correlation function

$$
C_{\mu \nu}(x)=\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle
$$

fanclrontic vacudus polarization

$a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]$ analytic kernel vectorial polarization

Vector Correlation function

$$
C_{\mu \nu}(x)=\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle
$$

Polarization Tensor

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\int d^{4} x e^{i Q x} C_{\mu \nu}(x)
$$

fanclrontic vacudus polarization

$a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]$ analytic kernel vectorial polarization

Vector Correlation function

$$
C_{\mu \nu}(x)=\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle
$$

Polarization Tensor

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\int d^{4} x e^{i Q x} C_{\mu \nu}(x)
$$

Vectorial Polarization

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\left(\delta_{\mu \nu} Q^{2} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)
$$

fanclrontic vacudus polarization

急 $a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]$
analytic kernel vectorial polarization

Vector Correlation function

$$
C_{\mu \nu}(x)=\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle
$$

Polarization Tensor

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\int d^{4} x e^{i Q x} C_{\mu \nu}(x)
$$

Vectorial Polarization

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\left(\delta_{\mu \nu} Q^{2} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)
$$

fanclrontic vacudus polarization

$a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]$
analytic kernel vectorial polarization

Vector Correlation function

$$
\operatorname{Cuv}_{\mu}(\mathfrak{C})=\left\langle\dot{J}_{\mu}(\underset{\mathscr{C}}{ }) \dot{J}_{\nu}(0)\right\rangle
$$

Polarization Tensor

- Long distance contributions

Vectorial Polarization

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\left(\delta_{\mu \nu} Q^{2} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)
$$

fanclrontic vacudus polarization

$a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]$
 analytic kernel vectorial polarization

Vector Correlation function

$$
C_{\mu \nu}(x)=\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle
$$

Polarization Tensor

- Long distance contributions
- Nonperturbative QCD effects

Vectorial Polarization

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\left(\delta_{\mu \nu} Q^{2} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)
$$

fagaronic vactulas polarization

$a_{\mu}^{H V P}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]$
 analytic kernel vectorial polarization

Vector Correlation function

$$
C_{\mu \nu}(x)=\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle
$$

Polarization Tensor

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\int d^{4} x e^{i Q x} C_{\mu \nu}(x)
$$

Vectorial Polarization

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\left(\delta_{\mu \nu} Q^{2} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)
$$

- Long distance contributions
- Nonperturbative QCD effects
- How to evaluate?!!?

How to evaluate the flyp?

...replace it with another, unrelated experimental measurement!

flow io evaluate the flyp?

...replace it with another, unrelated experimental measurement!

Optical theorem

Elastic scattering amplitude
Total $\mathrm{e}^{+} \mathrm{e}^{-}$cross section

flow io evaluate the flyp?

...replace it with another, unrelated experimental measurement!

Optical theorem

Elastic scattering amplitude

$=$
$=$

Total $\mathrm{e}^{+} \mathrm{e}^{-}$cross section

hadrons

flow io evaluate the flyp?

...replace it with another, unrelated experimental measurement!

Optical theorem

Elastic scattering amplitude

$$
a_{\mu}^{H V P}=\int_{0}^{\infty} d Q^{2} K\left(Q^{2}\right) \hat{\Pi}\left(Q^{2}\right)=\int_{0}^{\infty} R(E) K(E) d E
$$

$=$

hadrons

flow io evaluate the flyp?

...replace it with another, unrelated experimental measurement!

Optical theorem

Elastic scattering amplitude

$=$

Total $\mathrm{e}^{+} \mathrm{e}^{-}$cross section e^{+}e

Can we call this "theoretical prediction"...?

fow io evaluate the flyp?

...replace it with another, unrelated experimental measurement!

Optical theorem

Elastic scattering amplitude =

$=$

Total $\mathrm{e}^{+} \mathrm{e}^{-}$cross section e^{+}e γ ~n hadrons

Can we call this "theoretical prediction"...?
NO! We are plugging a substantial experimental input

Electron-posjiton cross section o

Probability of electron-positrons to annihilate into hadrons

$$
R(E)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

normalizing each energy E with the annihilation into muons

玉゙ecirosj-posjirosu cross secijon o

Probability of electron-positrons to annihilate into hadrons

$$
R(E)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

normalizing each energy E with the annihilation into muons

A number of worldwide experiments since the early ' 60

KLOE @ DAФNE FRASCATI

BABAR @ SLAC STANFORD

CMD3 @ VEPP-2000 NOVOSIBIRSK

	\vdots		

fyp ifors phenomenological R-ratio

		GR 1969	

M. Davier, A. Hoecker, B. Malaescu, Z. Zhang,
[Eur. Phys. J. C 80 (2020) 241]

「'se restowssed g-2 puzzle

August 2023: release of Run III results by Fermilab g-2 experiment

Scientists may be on brink of discovering fifth force of nature

Experts closing in on potentially identifying new force after surprise wobble of subatomic particle

© The muon g-2 ring sits in its detector hall at the Fermilab in Illinois. Photograph: Ryan
Postel/Fermi national accelerator laboratory/Reuters
The tantalising theory that a fifth force of nature could exist has been given a boost thanks to unexpected wobbling by a subatomic particle, physicists have revealed.

folel oss, fijitis fiorce!

Do we really control the theory uncertainties?

After all, we are replacing HVP with a combination of other experiments
Let us look back at the R-ratio...

fold on, filith force!

Do we really control the theory uncertainties?

After all, we are replacing HVP with a combination of other experiments
Let us look back at the R-ratio...

Hints of tension in the two-pions final state

Disagreement of 2023 CMD3 measurement

Leís folt inte cjuestions back on track

Leさt's put infe cjuestions back on track

- "Computing" HVP via dispersive method is the weakest part of the story

Lér's put inse questions back on track

- "Computing" HVP via dispersive method is the weakest part of the story
- Can we compute for real HVP from the first principle of the theory?

Lér's put inse questions back on track

- "Computing" HVP via dispersive method is the weakest part of the story
- Can we compute for real HVP from the first principle of the theory?
\rightarrow Lattice QCD comes to the rescue!

Consoptijstg finge firons the first principles

Original proposal

"Lattice Calculation of the Lowest-Order Hadronic Contribution to the Muon Anomalous Magnetic Moment"
[T. Blum, PRL 91 (2003)]

Consoputing finla firons the fiost prinaciples

Original proposal

"Lattice Calculation of the Lowest-Order Hadronic Contribution to the Muon Anomalous Magnetic Moment"

$$
\text { [T. Blum, PRL } 91 \text { (2003)] }
$$

Fourier transform of lattice-computed correlation function

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\int d^{4} x e^{i Q x} C_{\mu \nu}(x)
$$

"simple" two points correlation function

Consuputijug finge fisons the first principles

Original proposal

"Lattice Calculation of the Lowest-Order Hadronic Contribution to the Muon Anomalous Magnetic Moment"

$$
\text { [T. Blum, PRL } 91 \text { (2003)] }
$$

Fourier transform of lattice-computed correlation function

$$
\Pi_{\mu \nu}\left(Q^{2}\right)=\int d^{4} x e^{i Q x} C_{\mu \nu}(x)
$$

"simple" two points correlation function
Issue: Convolution kernel enhances $Q^{2} \sim m_{\mu}^{2} \sim 0.01 \mathrm{GeV}^{2}$

- Momenta on the lattice are quantized
- Lowest momenta are very noisy

Larijce OdCD sissumation

First principle simulation of strong interactions
Quantum modynamics on a Lattice
Euclidean spacetime with $\mathrm{O}\left(10^{10}\right)$ degrees of freedom

Laticice ? CD simsulation

First principle simulation of strong interactions

Quantum modynamics on a Lattice

Euclidean spacetime with $\mathrm{O}\left(10^{10}\right)$ degrees of freedom

Hybrid Monte Carlo + Molecular Dynamics simulations

Numerical solution of the discrete Dirac Equation (partial derivative equation \rightarrow large sparse matrix)

Laricice ? OCD sissumation

First principle simulation of strong interactions

Quantum modynamics on a Lattice

Euclidean spacetime with $\mathrm{O}\left(10^{10}\right)$ degrees of freedom

Hybrid Monte Carlo + Molecular Dynamics simulations

Numerical solution of the discrete Dirac Equation (partial derivative equation \rightarrow large sparse matrix)

A long list of scientific achievements:

- \% reconstruction of the hadron spectrum, \square

Cosselatios fusuction iss laticice QCD

Task \#1: Producing O(100-1000) "configurations" of gluonic fields.

- 1 configuration: $O(1-50 G B$ data) ~ 1 day of simulation on $O(5000)$ cores.
- 100 s MCoreHours in national, European \& worldwide supercomputers
- Similar in spirit to storing collision events at particle accelerators \rightarrow a handful of collaboration worldwide

Cosselatios fusuction ins latice QCD

Task \#1: Producing O(100-1000) "configurations" of gluonic fields.

- 1 configuration: $O(1-50 G B$ data) ~ 1 day of simulation on $O(5000)$ cores.
- 100s MCoreHours in national, European \& worldwide supercomputers
- Similar in spirit to storing collision events at particle accelerators \rightarrow a handful of collaboration worldwide

Task \#2: Propagate $\mathrm{O}(100)$ quark on the gluon backgrounds \& take algebraic combinations

- 100 propagator ~ 1 hour of simulation on $\mathrm{O}(5000)$ cores/few GPUS.
- Similar in spirit to data analysis of collision events.

- "Smaller" national, European calls.

Corselarion function in latcice QCD

Task \#1: Producing O(100-1000) "configurations" of gluonic fields.

- 1 configuration: $O(1-50 G B$ data) ~ 1 day of simulation on $O(5000)$ cores.
- 100s MCoreHours in national, European \& worldwide supercomputers
- Similar in spirit to storing collision events at particle accelerators \rightarrow a handful of collaboration worldwide

Task \#2: Propagate $\mathrm{O}(100)$ quark on the gluon backgrounds \& take algebraic combinations

- 100 propagator ~ 1 hour of simulation on $\mathrm{O}(5000)$ cores/few GPUS.
- Similar in spirit to data analysis of collision events.

- "Smaller" national, European calls.

Key point: Lattice is a real (Euclidean) space method So let's stay in real space!

hyy firons real space

By simply taking Laplace transform:

$$
a_{\mu}^{H V P}=\int_{0}^{\infty} d Q^{2} K\left(Q^{2}\right) \hat{\Pi}\left(Q^{2}\right) \quad \rightarrow \quad \int_{0}^{\infty} d t \tilde{K}(t) C(t)
$$

hyp firons real space

By simply taking Laplace transform:

$$
a_{\mu}^{H V P}=\int_{0}^{\infty} d Q^{2} K\left(Q^{2}\right) \hat{\Pi}\left(Q^{2}\right) \quad \rightarrow \quad \int_{0}^{\infty} d t \tilde{K}(t) C(t)
$$

Integration kernel enhances long euclidean times: $\tilde{K}(t) \xrightarrow{t \rightarrow \infty} t^{2}$

hyp fronn real space

By simply taking Laplace transform:

$$
a_{\mu}^{H V P}=\int_{0}^{\infty} d Q^{2} K\left(Q^{2}\right) \hat{\Pi}\left(Q^{2}\right) \quad \rightarrow \quad \int_{0}^{\infty} d t \tilde{K}(t) C(t)
$$

Integration kernel enhances long euclidean times: $\tilde{K}(t) \xrightarrow{t \rightarrow \infty} t^{2}$

Integral converges
because $C(t)$ falls
exponentially in time

$$
C(t) \rightarrow e^{-A t}
$$

fyp firons real space

By simply taking Laplace transform:

$$
a_{\mu}^{H V P}=\int_{0}^{\infty} d Q^{2} K\left(Q^{2}\right) \hat{\Pi}\left(Q^{2}\right) \quad \rightarrow \quad \int_{0}^{\infty} d t \tilde{K}(t) C(t)
$$

Integration kernel enhances long euclidean times: $\tilde{K}(t) \xrightarrow{t \rightarrow \infty} t^{2}$

Integral converges
because $C(t)$ falls exponentially in time
$C(t) \rightarrow e^{-A t}$

Issue
Exponentially large noise at large time $\frac{S}{N}(t) \rightarrow e^{-B t}$ [G.Parisi, 1984]
Djificule tasts：farcd work，special tools SUPERCOMPUTERS GOOD USAGE
＂La potenza è nulla senza il controllo＂

	$\begin{aligned} & \stackrel{\rightharpoonup}{w} \\ & \stackrel{y}{0} \\ & 0 \end{aligned}$		
	$\begin{aligned} & \text { ou } \\ & \stackrel{y ⿸ ⿻ 一 丿 口}{1} \end{aligned}$		
		NODE 1	

MODERN ALGORITHMS \&
NEW METHODS

Adaptative solvers

DD- ААMG

Multigrid

Eigendeflation

MODERN ALGORITHMS \&
NEW METHODS

Adaptative solvers

DD- $\AA \mathrm{AMG}$

Multigrid

Eigendeflation

L-sitice 〔ejulis ys, clispersive resultos

Dispersive results incompatible
with the experiments

KNT 18
Jegerlehner 17
DHMZ 17
DHMZ 11
HLMNT 11

From 2020: Lattice results are compatible with the experiments!!!

DISPERSIVE PREDICTION

g-2 EXPERIMENT

 DISPERSIVE PREDICTION

LATTICE PREDICTION

- NEW PHYSICS?
- EXPERIMENTAL ISSUES?
g-2 EXPERIMENT
 DISPERSIVE PREDICTION

LATTICE PREDICTION

g-2 EXPERIMENT

PROBLEMS IN R-RATIO?

- NEW PHYSICS?
- EXPERIMENTAL ISSUES?

PROBLEMS IN LATTICE?

- BMW IS ALONE
- OTHERS ARE ARRIVING
 DISPERSIVE PREDICTION

LATTICE PREDICTION

g-2 EXPERIMENT

PROBLEMS IN R-RATIO?

- NEW PHYSICS?
- EXPERIMENTAL ISSUES?

PROBLEMS IN LATTICE?

- BMW IS ALONE
- OTHERS ARE ARRIVING

Theneretical unclerstancling of R(E)

$$
R(E)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

A number of important features are qualitatively understood

T'seoretical buclerstancling of R(E)

$$
R(E)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

A number of important features are qualitatively understood
$R(E) \sim 3$ at large Energies: color gauge theory J / Ψ narrow peak: charm quark (GIM)

T'seoretical busclerstancling of R(E)

Thneoretical unclerstanding of $R(E)$

Hadrons are confined states of quarks interacting nonperturbatively
$R(E)$ Semi-quantitatively described only by models/effective theories

Disect sleterssijsacion of̈ is(E) firons V(t)

$$
\underbrace{\frac{\alpha_{e m}^{2}}{3 \pi^{2}} \int_{0}^{\infty} \frac{d E^{2}}{E^{2}} \tilde{K}(E) \boldsymbol{R}(\boldsymbol{E})}_{\text {disperisve, experimental }}=a_{\mu}^{H V P}=\underbrace{2 \alpha_{e m}^{2} \int_{0}^{\infty} d t t^{2} K\left(m_{\mu} t\right) \boldsymbol{V}(\boldsymbol{t})}_{\text {lattice, } S M}
$$

$$
\underbrace{\frac{\alpha_{e m}^{2}}{3 \pi^{2}} \int_{0}^{\infty} \frac{d E^{2}}{E^{2}} \tilde{K}(E) \boldsymbol{R}(\boldsymbol{E})}_{\text {disperisve, experimental }}=a_{\mu}^{H V P}=\underbrace{2 \alpha_{e m}^{2} \int_{0}^{\infty} d t t^{2} K\left(m_{\mu} t\right) \boldsymbol{V}(t)}_{\text {lattice, } S M}
$$

$R(E)$ is the inverse Laplace transform of $V(t)$

- To be computed in presence of noise \& finite sampling
- Notoriously, an ill-posed problem (needs regularization)

Disect dererssifseition of is(E) firons V(t)

$$
\underbrace{\frac{\alpha_{e m}^{2}}{3 \pi^{2}} \int_{0}^{\infty} \frac{d E^{2}}{E^{2}} \tilde{K}(E) \boldsymbol{R}(\boldsymbol{E})}_{\text {disperisve, experimental }}=a_{\mu}^{H V P}=\underbrace{2 \alpha_{e m}^{2} \int_{0}^{\infty} d t t^{2} K\left(m_{\mu} t\right) \boldsymbol{V}(\boldsymbol{t})}_{\text {lattice, } S M}
$$

$R(E)$ is the inverse Laplace transform of $V(t)$

- To be computed in presence of noise \& finite sampling
- Notoriously, an ill-posed problem (needs regularization)
...and we are working hard on this!!!
"Probing the Energy-Smeared R-Ratio Using Lattice QCD" [PRL 130 (2023)] see A.De Santis firetalk, today @10:45 am

Corrsplersentisy o!bservaibles: windows

$$
\underbrace{\frac{\alpha_{e m}^{2}}{3 \pi^{2}} \int_{0}^{\infty} \frac{d E^{2}}{E^{2}} \tilde{K}(E) \boldsymbol{R}(\boldsymbol{E})}_{\text {disperisve, experimental }} \underline{\tilde{\Theta}(E)}=a_{\mu}^{\Theta}=\underbrace{2 \alpha_{e m}^{2} \int_{0}^{\infty} d t t^{2} K\left(m_{\mu} t\right) \boldsymbol{V}(\boldsymbol{t})}_{\text {lattice, } S M} \underline{\Theta(t)}
$$

Consplensentensy obseervaibles: winclows

$$
\underbrace{\frac{\alpha_{e m}^{2}}{3 \pi^{2}} \int_{0}^{\infty} \frac{d E^{2}}{E^{2}} \tilde{K}(E) \boldsymbol{R}(\boldsymbol{E})}_{\text {disperisve, experimental }} \underline{\tilde{\Theta}(E)}=a_{\mu}^{\Theta}=\underbrace{2 \alpha_{e m}^{2} \int_{0}^{\infty} d t t^{2} K\left(m_{\mu} t\right) \boldsymbol{V}(\boldsymbol{t})}_{\text {lattice, } S M} \underline{\Theta(t)}
$$

Modified version of HVP, more localized in energy
$\Theta^{S D}(t)+\Theta^{W}(t)+\Theta^{L D}(t)=1$

Sinort e Internediate winclows

Short Distance = Large Energies (mostly perturbative)

Lattice compatible with Dispersive

S'surt : Inserssuediate winadows

Short Distance = Large Energies (mostly perturbative)

Lattice compatible with Dispersive

Intermediate Distances ~ 1-2 GeV
(two pions final state)

Lattice incompatible with Dispersive!

Sisurt e Inserssodiate winctows

Short Distance = Large Energies (mostly perturbative)

Lattice compatible with Dispersive

Intermediate Distances ~ 1-2 GeV
(two pions final state)

Lattice incompatible with Dispersive!

Botion line

Experimental status

- Muon anomalous magnetic is measured since 40 years
- Striking agreement within recent measurements
- Precision will improve in 2024 (Run IV at Fermilab g-2)

Eoteoss lisse

Experimental status

- Muon anomalous magnetic is measured since 40 years
- Striking agreement within recent measurements
- Precision will improve in 2024 (Run IV at Fermilab g-2)

Theoretical status

- All contributions but HVP are well understood
- Old g-2 puzzle: disagreement with experiments using R-ratio to "compute" HVP
- New g-2 puzzle: ~agreement when using HVP from recent lattice calculation

possitole exolutions to thne puzzles

Assuming NO NEW PHYSICS

(the so called "everybody go home" scenario)

posjible solutions to the puzzles

Assuming NO NEW PHYSICS

(the so called "everybody go home" scenario)

Who is wrong?
 Solves Puzzle 1? Solves Puzzle 2?

Mistake in lattice prediction of HVP
Mistake in g-2 experiments
Mistake in inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$cross section

NO

YES

YES
YES

> Posjible solutions to the puzzles

Allowing for NEW PHYSICS and no experimental/lattice mistake

 Allowing for NEW PHYSICS and no

 Allowing for NEW PHYSICS and no experimental/lattice mistake

 experimental/lattice mistake}

\rightarrow Difficult to explain at the same time both puzzles

New physics behind the new muon g-2 puzzle?

Luca Di Luzio, ${ }^{1,2}$ Antonio Masiero,,${ }^{1,2}$ Paride Paradisi, ${ }^{1,2}$ and Massimo Passera ${ }^{2}$
${ }^{1}$ Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, Italy
${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy

The recent measurement of the muon $g-2$ at Fermilab confirms the previous Brookhaven result. The leading hadronic vacuum polarization (HVP) contribution to the muon g - 2 represents a crucial ingredient to establish if the Standard Model prediction differs from the experimental value. A recent lattice QCD result by the BMW collaboration shows a tension with the low-energy $e^{+} e^{-} \rightarrow$ hadrons data which are currently used to determine the HVP contribution. We refer to this tension as the new muon g-2 puzzle. In this Letter we consider the possibility that new physics contributes to the $e^{+} e^{-} \rightarrow$ hadrons cross-section. This scenario could, in principle, solve the new muon g - 2 puzzle. However, we show that this solution is excluded by a number of experimental constraints.

Posciolole solutions to the puzzles

Allowing for NEW PHYSICS and no experimental/lattice mistake

\rightarrow Difficult to explain at the same time both puzzles

New physics behind the new muon \boldsymbol{g}-2 puzzle?

Luca Di Luzio, ${ }^{1,2}$ Antonio Masiero,,${ }^{1,2}$ Paride Paradisi, ${ }^{1,2}$ and Massimo Passera ${ }^{2}$
${ }^{1}$ Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, Italy
${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy

The recent measurement of the muon $g-2$ at Fermilab confirms the previous Brookhaven result. The leading hadronic vacuum polarization (HVP) contribution to the muon g - 2 represents a crucial ingredient to establish if the Standard Model prediction differs from the experimental value. A recent lattice QCD result by the BMW collaboration shows a tension with the low-energy $e^{+} e^{-} \rightarrow$ hadrons data which are currently used to determine the HVP contribution. We refer to this tension as the new muon g-2 puzzle. In this Letter we consider the possibility that new physics contributes to the $e^{+} e^{-} \rightarrow$ hadrons cross-section. This scenario could, in principle, solve the new muon g - 2 puzzle. However, we show that this solution is excluded by a number of experimental constraints.
...but more complicated scenarios are not ruled out

In fine f゙ucuse

Experimental side

- More precise data from g-2 experiment
- Reanalysis of old $\mathrm{e}^{+} e$ experiment KLEO in progress
- Additional measurements from ongoing e+e- experiments
- New experiments MuOnE in the near future

In fine filsure

Experimental side

- More precise data from g-2 experiment
- Reanalysis of old e+e experiment KLEO in progress
- Additional measurements from ongoing e+e experiments
- New experiments MuOnE in the near future

Theoretical side

- More lattice collaborations will compute g-2
- Greater accuracy (better infinite volume \& continuum limits)
- Increased precision
- Direct comparison of more localized portions of R-ratio

In fine f゙ucure

Experimental side

- More precise data from g-2 experiment
- Reanalysis of old e+e experiment KLEO in progress
- Additional measurements from ongoing e+e experiments
- New experiments MuOnE in the near future

Theoretical side

- More lattice collaborations will compute g-2
- Greater accuracy (better infinite volume \& continuum limits)
- Increased precision
- Direct comparison of more localized portions of R-ratio

