
Strong-coupling results in N = 2
superconformal gauge theories

Paolo Vallarino

New Frontiers in Theoretical Physics

Cortona, 27th September 2023

1 / 16



This talk is mainly based on

• M. Billò, M. Frau, A. Lerda, A. Pini, P.V. "Localization vs holography
in 4d N = 2 quiver theories" (2022) arXiv: 2207.08846, JHEP 10
(2022) 020

• M. Billò, M. Frau, A. Lerda, A. Pini, P.V. "Strong coupling expansions
in N = 2 quiver gauge theories" (2022) arXiv: 2211.11795, JHEP
01 (2023) 119
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Purpose

• The analysis of the strong-coupling regime in an interacting gauge
theory is a very difficult problem but, when there is a high amount of
symmetry, remarkable progress can be made.

• In particular this happens for N = 4 SYM theory, where many exact
results have been found over the years, especially in the planar limit

N → ∞ and λ ≡ g2
YMN is fixed

However we will see cases where exact results are found in N = 2
quiver gauge theories.

• Main tools: holography, supersymmetric localization and integrability.
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N = 2 quiver gauge theory

We consider the case with 2 nodes

N N

I = 0 I = 1

1

• In each of the two nodes there is a SU(N) gauge group with its vector
multiplet while the links represent hypermultiplets in the
bifundamental representation.

• It arises as a Z2 orbifold projection from N = 4 SYM.
• Given the matter content, this is a conformal gauge theory.
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N = 2 quiver gauge theory

An important class of operators consists of chiral operators

On,I (x) = trϕI (x)
n1 . . . trϕI (x)

nk

These are local, gauge invariant, chiral primary operators, i.e.

[
Q̄A α̇,On,I

]
= 0 ⇒ conformal dimension ∆n =

k∑
i=1

ni

We focus on single-trace operators On,I (x). In this quiver theory we can
define 2 different combinations of chiral operators

Uk(x) =
1√
2

[
trϕ0(x)

k + trϕ1(x)
k

]
untwisted

Tk(x) =
1√
2

[
trϕ0(x)

k − trϕ1(x)
k

]
twisted

5 / 16



N = 2 quiver gauge theory

Our aim is to study 2- and 3-point functions of these chiral primary
operators in the ’t Hooft limit.
These correlators are constrained by conformal invariance, conservation of
the U(1) R-charge and Z2 symmetry

〈
Uk(x)Uk(y)

〉
=

GUk

|x − y |2k
〈
Tk(x)T k(y)

〉
=

GTk

|x − y |2k

〈
Uk(x)Uℓ(y)Up(z)

〉
=

GUk ,Uℓ,Up

|x − z |2k |y − z |2ℓ〈
Uk(x)Tℓ(y)T p(z)

〉
=

GUk ,Tℓ,T p

|x − z |2k |y − z |2ℓ

with p = k + ℓ
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N = 2 quiver gauge theory

Then the normalized 3-point functions

CUk ,Uℓ,Up
=

GUk ,Uℓ,Up√
GUk

GUℓ
GUp

CUk ,Tℓ,T p
=

GUk ,Tℓ,T p√
GUk

GTℓ
GTp

These correlation functions can be computed in perturbation theory using
Feynman diagrams, but only few terms can be found in an explicit form
due to the difficulty of the evaluation of the loop integrals. A much more
efficient way to compute them is by using localization.
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Localization

• Supersymmetric localization maps the computation of these correlators
in the gauge theory to a matrix model on S4

[Pestun, 2007]

Path integrals =⇒ Finite dimensional integrals

• Matrix model can be used to evaluate different kinds of observables in
N = 2 conformal gauge theories, for instance

〈
Ok(0)Ok(∞)

〉
R4

conformal−−−−−−→
map

〈
Ok(N)Ok(S)

〉
S4

localization−−−−−−→ matrix model

[Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu, 2016]

• There exists a precise correspondence between the operators defined in
the QFT and the operators defined in the matrix model.
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2-point functions

• In the matrix model one can easily prove that 2- and 3- point
functions of untwisted operators are planar equivalent to their N = 4
counterpart.

• Correlators with twisted operators require much more efforts. The
final result for 2-point functions reads

GT2n+1

GT2n+1

=
det
(
1 − Xodd

[n+1]
)

det
(
1 − Xodd

[n]

)
GT2n

GT2n

=
det
(
1 − Xeven

[n+1]
)

det
(
1 − Xeven

[n]

)
[Billò, Frau, Galvagno, Lerda, Pini, 2021]
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2-point functions

where

Xn,m = −8(−1)
n+m+2nm

2
√
nm

∫ ∞

0

dt

t

et

(et − 1)2
Jn
( t√λ

2π

)
Jm
( t√λ

2π

)
and

X2n,2m+1 = 0

so that it is convenient to use the notation

(Xeven)n,m = X2n,2m and (Xodd)n,m = X2n+1,2m+1

The perturbative expansion is entirely resummed and we have the exact
dependence on the coupling λ for the correlator through the X matrix!
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Strong-coupling regime

• From the asymptotic expansion of the Bessel functions, one can derive
the behavior of the X matrix and then of the 2-point functions, when
the ’t Hooft coupling becomes large.

• At the leading term at strong coupling the 2-point functions read

GTn

GTn

∼
λ→∞

4π2

λ
n (n − 1) + O

(
1

λ3/2

)

[Billò, Frau, Galvagno, Lerda, Pini, 2021]
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Strong-coupling regime

However, even the full strong-coupling expansion of the 2-point
functions has been derived

GTn

GTn

∼
λ→∞

4π2

λ
k(k − 1)

(λ′

λ

)k−1
[
1 + (k − 1)(2k − 1)(2k − 3)

ζ3

λ′ 3/2

− (k − 1)(2k − 3)(2k − 5)(4k2 − 1)
9 ζ5

16λ′ 5/2

+ (k − 1)(2k − 1)(2k − 3)(2k − 5)(4k2 − 20k − 3)
ζ2
3

4λ′ 3 + O
( 1
λ′ 7/2

)]
+ . . .

with
√
λ′ ≡

√
λ− 4 log 2

[Beccaria, Korchemsky, Tseytlin, 2022]
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3-point functions

• Let’s now consider the 3-point functions.

• Crucial observation: the 3-point functions are related to the 2-point
functions through exact identities that are valid for all values of the
coupling constant

GUk ,Tℓ,T p
=

Gk,ℓ,p√
ℓGℓ p Gp

√(
ℓ+ λ∂λ

)
GTℓ

√(
p + λ∂λ

)
GTp

GTk ,Tℓ,Up
=

Gk,ℓ,p√
k Gk ℓGℓ

√(
k + λ∂λ

)
GTk

√(
ℓ+ λ∂λ

)
GTℓ

[Billò, Frau, Lerda, Pini, PV, 2022]
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3-point functions

• Finally, from these results it is straightforward to obtain also the
large-λ expansions of the normalized 3-point functions

CUk ,Tℓ,T p
=

√
k√

2N

√
ℓ+ λ∂λ

(
logGTℓ

)√
p + λ∂λ

(
logGTp

)

• At λ = 0 they read CUk ,Tℓ,T p
=

√
k ℓ p

N
√

2
[Lee, Minwalla, Rangamani, Seiberg, 1998]

• At the leading term at strong coupling CUk ,Tℓ,T p
=

√
k (ℓ−1) (p−1)

N
√

2

Result also checked using AdS/CFT correspondence!
[Billò, Frau, Lerda, Pini, PV, 2022]
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Summary and outlook

• We summed up the perturbative expansion for 2- and 3- point
functions of CPOs in N = 2 quiver theories, finding exact expressions
in the planar limit and we derived their strong-coupling expansions.

• We extended these results to the most general quiver with M nodes
and also to another N = 2 SCFT obtained through orientifold
projection from the Z2 quiver.

• Recently also other kinds of correlation functions in these theories
have been considered at strong coupling, i.e.

〈
W Ok

〉
,
〈
Wα1 . . .Wαk

〉
.

[Pini, PV, 2023]

• It would be nice to derive subleading corrections at strong coupling
from AdS/CFT correspondence (string corrections, beyond
supergravity limit).
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Thanks for your attention!
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Localization and matrix model
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Matrix model

In the large-N limit, the instanton contributions are exponentially
suppressed. Then in the quiver gauge theory we have

Z =

∫
da0 da1 e−tr a2

0−tr a2
1−Sint

where a0 and a1 are N × N traceless Hermitean matrices and

Sint = 2
∞∑

m=2

2m∑
k=2

(−1)k
( −λ

8π2N

)m (2m
k

)
ζ2m−1

2m
(tr a2m−k

0 − tr a2m−k
1 )(tr ak0 − tr ak1)

Hence for a generic function f (a)

⟨f (a)⟩ =
∫
da0 da1 e−tr a2

0−tr a2
1−Sint f (a)∫

da0 da1 e−tr a2
0−tr a2

1−Sint
=

⟨e−Sint f (a)⟩0
⟨e−Sint ⟩0

,

where ⟨ ⟩0 stands for the expectation value in the free matrix model.
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Matrix model

Normal-ordering!
The operators that we naturally introduce in the matrix model

A±
k =

1√
2

(
tr ak0 ± tr ak1

)
do not correctly correspond to the gauge theory operators Uk(x) and
Tk(x), since they are normal-ordered, i.e.

ϕI ϕI = 0

whereas

aI aI ̸= 0

Solution: define normal-ordered operators also in the matrix model

O±
k ≡ : A±

k : =
∑
ℓ≤k

M±
k,ℓ A

±
ℓ
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Free matrix model

Consider the free theory: Sint = 0.

Solving the Gaussian integrals one finds

〈
O±

n O±
m

〉
0 = n

(N
2

)n
δn,m ≡ Gn δn,m

〈
O±

n O±
mO±

p

〉
0 =

nm p

2
√

2

(N
2

) n+m+p
2 −1

δn+m,p ≡ Gn,m,p δn+m,p
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Free matrix model

We can conveniently define

P±
n =

1√
Gn

O±
n

∣∣∣
λ=0

so that 2- and 3- point functions become〈
P±
n P±

m

〉
0 = δn,m ≡ n m

and

〈
P±
n P±

mP+
p

〉
0 =

√
nm p

N
√

2
δn+m,p ≡

n m

p
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Interacting matrix model

• We have to treat separately untwisted and twisted operators.

• Untwisted operators are simple: they behave exactly as the operators
in the free matrix model, since Sint just depends on twisted operators.

• Indeed we get

〈
P+
n P+

m

〉
=

〈
P+
n P+

m e−Sint
〉
0〈

e−Sint
〉
0

∼
N→∞

〈
P+
n P+

m

〉
0

〈
����e−Sint

〉
0

�����〈
e−Sint

〉
0

〈
P+
n P+

mP+
p

〉
=

〈
P+
n P+

mP+
p e−Sint

〉
0〈

e−Sint
〉
0

∼
N→∞

〈
P+
n P+

mP+
p

〉
0

〈
����e−Sint

〉
0

�����〈
e−Sint

〉
0
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Interacting matrix model

Twisted operators =⇒ we have to take into account Sint .

Rewriting Sint in terms of the normalized operators P−
n one can realize that

Sint = −1
2

∑
n,m

P−
n Xn,m P−

m

[Beccaria, Billò, Galvagno, Hasan, Lerda, 2020]

where

Xn,m = −8(−1)
n+m+2nm

2
√
nm

∫ ∞

0

dt

t

et

(et − 1)2
Jn
( t√λ

2π

)
Jm
( t√λ

2π

)
and

X2n,2m+1 = 0

so that it is convenient to use the notation

(Xeven)n,m = X2n,2m and (Xodd)n,m = X2n+1,2m+1
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Interacting matrix model

• Thus Sint in this form has all the dependence on λ inside the matrix X
through the Bessel functions, differently from the original expression,
where it was given through a weak-coupling expansion.

• Hence the perturbative expansion in Sint is resummed and we have the
exact dependence on λ through the matrix X.

• Now we are able to compute 2- and 3- point functions of twisted
operators in the interacting matrix model at any value of the coupling
constant.
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Interacting matrix model

Let’s focus on the 2-point functions. We have

〈
P−
n P−

m

〉
=

〈
P−
n P−

m e−Sint
〉
0〈

e−Sint
〉
0

=
〈
P−
n P−

m

〉
0 +

(〈
P−
n P−

m

〉
0

〈
Sint
〉
0 −

〈
P−
n P−

m Sint
〉
0

)
+ . . .

∼
N→∞

δn,m +
1
2

∑
k,ℓ

〈
P−
n P−

m

(
P−
k Xk,ℓP

−
ℓ

)〉
0

∣∣∣
conn

+ . . .

= δn,m + Xn,m + X2
n,m + · · · =

(
1

1 − X

)
n,m

≡ Dn,m

=⇒
〈
P−
n P−

m

〉
= Dn,m
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Strong-coupling regime

• From the asymptotic expansion of the Bessel functions, one can derive
the behavior of the X matrix and then of the 2-point functions, when
the ’t Hooft coupling becomes large.

• One can prove that at strong coupling X is a three-diagonal infinite
matrix

Xodd
n,m ∼

λ→∞
− λ

8π2 (−1)n+m

√
2m + 1
2n + 1

(
δn−1,m

n(2n − 1)
+

δn,m
n(n + 1)

+
δn+1,m

(n + 1)(2n + 3)

)
[Beccaria, Dunne, Tseytlin, 2021]

[Beccaria, Billò, Frau, Lerda, Pini, 2021]
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Strong-coupling regime

• From this result, it is possible to get the leading term for λ → ∞ of
the 2-point functions

〈
O−

n O−
n

〉
∼

λ→∞
Gn

4π2

λ
n (n − 1) + O

(
1

λ3/2

)

• Exploiting the small-λ expansion of the Bessel functions it is possible
to efficiently generate very long perturbative series.

• These series have a finite radius of convergence at λ ≃ π2, but can be
extended beyond this bound with a Padé resummation.
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Strong-coupling regime

N=50

N=100

N=150

N=500

Strong coupling

Padé

1000 1500 2000 2500 3000 3500 4000
λ/π2

0.005

0.010

0.015

0.020

0.025

0.030

< O3 O3 >
3
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Wilson loop operator in N = 2 superconformal gauge theories

WC ≡ 1
N

tr P exp
{∮

C
dτ

[
iAµ(x)ẋ

µ(τ) +
R√
2

(
ϕ(x) + ϕ(x)

)]}

29 / 16



A different correlator

• Exploiting localization techniques, one can also consider the correlator
of a circular Wilson loop with one chiral operator

〈
WC On(x)

〉
.

• E-theory: orientifold projection of the quiver by identifying the fields
of the two nodes.

• Exact expression in the planar limit

⟨WC O2p+1⟩ ≃

1
N

p∑
ℓ=1

√
G2ℓ+1M2p+1,2ℓ+1(λ)

∞∑
n=1

√
2n + 1

(
I2n+1(

√
λ)

ℓ∑
m=1

h(ℓ)m Dn,m

)
[Pini, PV, 2023]

• Leading term at strong coupling with analytical and numerical
techniques.
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