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Theories from physics and new experimental data are revealing the 
mechanisms that control structure and function of the human genome.



… ATGTTAGACGT…

… but how is it regulated in health and disease?

The end of the beginning

Our genome is sequenced:



Human DNA

gene
…ATGATTCGTAGGTTACTCGGCTAGGACCT…

protein

Genes = 2% non-coding DNA = 98%

Our DNA has 3 billion bases (A,T,C,G)
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Not just a linear sequence



(Cremer&Cremer 1990’s)
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GAM probes 3D proximity by sequencing DNA from nuclear sections: spatially closer sites co-segregate more frequently.

(Beagrie et al. Nature 2017, Nature Meth. 2023; Fiorillo et al. Nature Meth. 2021)
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Chromosomes are divided in 0.5-1Mb long TADs (Dixon; Nora 2012) and in ~10Mb A/B compartments (Lieberman-A. 2009). Patterns 
exist across chromosomal scales (Sexton 2012, Phillips-C. 2013, …) hierarchically arranged in metaTADs (Fraser, Chiariello 2014, …).

Not just a linear sequence
New quantitative technologies revealed that chromosomes have complex 3D structures.
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Principled approaches from physics can help identifying the origin 
of contact patterns and their molecular determinants.
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How can genes and their distal regulators find each other?
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How can genes and their distal regulators find each other?

Interaction mechanism

(MN&Prisco PRL`07)

… a “particle” produces the interaction.
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• A model of polymers & particles:

The Strings&Binders (SBS) model

• Scenario:

Stable conformations correspond to the system thermodynamic phases. 

A phase transition controls folding switch-like, with no need of molecular fine tuning.

(MN&Prisco PRL`07; Barbieri et al. PNAS 2012, Nature SMB 2017)
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Folding of the SBS model 
Contact patterns result from polymer micro phase-separation.

contact frequency(Barbieri et al. PNAS 2012, Nature SMB 2017)
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A stringent test of the theory 
Use physics to predict the effects of mutations on 3D architecture and function of the genome.

Polymer model
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3D structure and gene regulation in neuronal development
Extensive cell-type specific 3D chromosome structures relate to patterns of gene expression in mouse brain.

(Winick-Ng et al. Nature 2021)

Nrxn3 occupies two 
compact TADs in mESCs 

but melts in dopaminergic 
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accessible and expressed.
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Polymer physics explains the distribution of DNA 3D structure across single-cells, not just average contacts.
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The PRISMR method
PRISMR infers the minimal polymer model that best explains a given contact matrix. 

• It infers the model colours from experimental data:

(Bianco et al. Nature Gen. 2018)
N	parameters,														,	are	used	to		
output	N2	contacts	from	only	physics

N} parameters
output = 1

N

}
}N

N

PRISMR	combines	Machine	Learning	and	Polymer	Physics

output

Contact data

compare

PRISMR inference

input
…

iterate

binding 
sites Binders

String
3D struct. contactsPhysics

• The biological nature of colours is next searched through experiments:

(see, e.g., Baribieri et al. Nature SMB 2017; Esposito Cell Rep. 2022)
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The combination of microscopy and SBS model helps 
identifying molecular factors shaping folding.

Binding particles



Binding factors in the HoxB region in mESCs
Active / poised gene promoters colocalize homotypically resp. with Pol-II-S2p / PRC2-Ezh2.

(Barbieri et al., Nature SMB 2017)
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Different binding site types of the model correlate with distinct combinations of DNA marks and binding factors. 

• SBS model of the locus in HCT116

4 types of binding sites
binders

CARTOON:

Binding domains combinatorially 
overlap along DNA

(Barbieri et al Nature SMB 2017; Conte et al. Nature Com. 2020; Esposito et al. Cell Rep. 2022)
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A combinatorial code of 1D chromatin marks predicts 3D structure genome wide (1D       3D code).

(Esposito et al. Cell Rep. 2022)

(Linear segmentation of chromatin 
(e.g., A/B compartments) is worse 
at predicting 3D contacts.)
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Conclusions

• Chromosome structure is shaped by phase transitions, which control genome functions.

• Physics predicts 3D impact of mutations and origin of associated diseases.

• Machine Learning & physics combined discover new molecular factors defining DNA 
3D organisation (e.g., Pol-II). 

“No field is making more progress than biology and [...] the most powerful assumption to understand life
is that everything that living things do can be derived in terms of physics and atoms.”

Richard P. Feynman


