New results for the Schwinger model from the lattice

Bernardo Zan

September 27, 2023

Based on [Dempsey, Klebanov, Pufu, BZ '22] and [Dempsey, Klebanov, Pufu, Søgaard, BZ '23]

Schwinger model: 1 + 1 dimensional QED.

$$\mathcal{L}=-rac{1}{4g^2}F_{\mu
u}F^{\mu
u}-rac{ heta}{4\pi}\epsilon^{\mu
u}F_{\mu
u}+ar{\Psi}(i\partial\!\!\!/-A\!\!\!/-m)\Psi\,.$$

Massless fermion m = 0: theory is solvable! It has a mass gap [Schwinger '62]

Exhibits: screening (m = 0), confinement $(m \neq 0)$, chiral symmetry breaking $(\langle \bar{\psi}\psi \rangle \neq 0)$, ...

The lattice Schwinger model

Not solvable for $m \neq 0$! Study it by putting it on the lattice in the Hamiltionian formulation [Banks, Kogut, Susskind '76]

Lattice theories in the Hamiltonian formulation are promising (no sign problem, real time dynamics, ...), but are less developed than those in Lagrangian formulation!

The lattice Schwinger model

In the last decade, a lot of interest in the Schwinger model from several communities

- Effort to simulate gauge theories in the Hamiltonian formulation using **tensor network** methods. [many people, e.g. the Munich group: Cirac, Bañuls, ...]
- Quantum simulation of gauge theories: the Schwinger model was experimentally realized using trapped ions in the case of 4 sites [Martinez et al. '16] and 6 site [Nguyen et al, '21]

The lattice Schwinger model

The Hamiltonian for the Schwinger model is $(A_0 = 0 \text{ gauge})$

$$H = \int dx \left[\frac{g^2}{2} \left(E(x) + \frac{\theta}{2\pi} \right)^2 - i\psi^{\dagger}\gamma^5 (i\partial_1 - A_1)\psi + m\psi^{\dagger}\gamma^0\psi \right]$$

Discretize this by using **staggered fermions** [Kogut, Susskind '75]. Avoids fermion doubling problem!

$$\Psi = \begin{pmatrix} \Psi_e \\ \Psi_o \end{pmatrix}$$
 χ_{2n+1}

The lattice Schwinger Hamiltonian

From the continuum

$$H = \int dx \left[\frac{g^2}{2} \underbrace{\left(E(x) + \frac{\theta}{2\pi} \right)^2}_{-\frac{1}{2}} - \underline{i\psi^{\dagger}\gamma^5(i\partial_1 - A_1)\psi}_{-\frac{1}{2}} + \underline{m\psi^{\dagger}\gamma^0\psi}_{-\frac{1}{2}} \right]$$

to the lattice

$$H = \frac{g^2 a}{2} \sum_{n} \underbrace{\left(L_n + \frac{\theta}{2\pi}\right)^2}_{n} - \underbrace{\frac{i}{2a} \sum_{n} \left(\chi_n^{\dagger} U_n \chi_{n+1} - \text{h.c.}\right)}_{n} + \underbrace{m_{\text{lat}} \sum_{n} (-1)^n \chi_n^{\dagger} \chi_n}_{n}$$

with the commutation relations $\{\chi_n^{\dagger}, \chi_m\} = \delta_{nm}$ and $[L_n, U_m] = \delta_{nm}U_m$.

$$\frac{\ln - 1}{\chi_{n}} = \frac{\ln - 1}{\chi_{n+1}} = \frac{\ln - 2}{\chi_{n+2}}$$

Gauge invariance

We only care about gauge invariant states: Gauss law

Arbitrary choice, but adopted by almost all of the literature (exception: [Berruto, Grignani, Semenoff, Sodano '98]).

Gauss law allows us to integrate out the electric field

ก

Closed boundary conditions

Continuum mass m and lattice mass m_{lat} are not the same.

Continuum massless theory m = 0: chiral symmetry $\psi \rightarrow \exp(i\alpha\gamma_5)\psi$ is **anomalous**!

Take V_{α} , the operator that implements a chiral transformation, $V_{\alpha}\psi V_{\alpha}^{-1} = e^{i\alpha\gamma_5}\psi$. On the Hamiltonian it acts

$$V_{\alpha}H_{\theta}V_{\alpha}^{-1}=H_{ heta-2lpha}$$

Chiral transformation changes the theta angle.

What happens on the lattice?

The Schwinger anomaly on the lattice

Discrete $\pi/2$ chiral transformation on the lattice: **one site lattice translation**!

Given the operator that implements this $V\chi_n V^{-1} = \chi_{n+1}$ we find that

$$VH_{\theta}V^{-1} = H_{\theta+\pi} \qquad \Leftrightarrow \qquad m_{\rm lat} = -\frac{g^2 a}{8}$$

Therefore lattice and continuum mass related by [Dempsey, Klebanov, Pufu, BZ '22]

$$m_{\rm lat} = m - rac{g^2 a}{8}$$

Subleading in the continuum limit $a \rightarrow 0$, but greatly improves convergence.

Improved convergence: $N_f = 1$

 $\theta = \pi$: \mathbb{Z}_2 symmetry, order parameter is $\langle E_{\text{eff}} \rangle \equiv \frac{1}{N} \sum_n \langle L_n + \frac{\theta}{2\pi} \rangle$.

Exact diagonalization computation of m_c .

Tensor networks (DMRG) (more precise, O(500) sites)

• No mass shift: 0.3335 \pm 0.0002 [Byrnes et al. 2002]

• With mass shift: 0.33352 ± 0.00003

Not just a quantitative improvement: $N_f = 2$

Two flavor Schwinger model at $\theta = \pi$: fermion masses m_1 and m_2 .

• For $m_1 = m_2 = 0$: gapless, $SU(2)_1$ WZW model (c = 1 CFT) • One large mass \rightarrow single flavor Schwinger model $c = \frac{1}{2}$ Order Disorder Possible scenarios:

Numerical results

Scenario 3 is the correct one!

The physics

- Lines of Ising CFTs all the way to the origin
- Around the origin, nonperturbative small wedge where Z₂ is broken
- For small m₁ = m₂ = m, marginally relevant perturbation.

Similar to CP breaking in QCD₄ at $\theta = \pi$.

Summary and future directions

Today:

- 1. Careful analysis of continuum theory
- 2. Improvement of lattice discretization of the model
- 3. New physics for two dimensional gauge theories.

Path forward:

- Non-abelian gauge theories in 2*d*: e.g. adjoint QCD₂ on the lattice. recent renewed interest.
- Abelian theories in 3*d*: go to one dimension higher, consider Abelian theories such as QED₃, . A similar setup has been studied [Felser, Silvi, Collura, Montangero '20], but mass shift will probably play a role here.

Backup slides

Improved convergence: $N_f = 1$

'Exact' diagonalization with periodic boundary conditions Keep L = Na fixed, send $N \rightarrow \infty$.

Improved convergence: $N_f = 2$

