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The Schwinger model

Schwinger model: 1 + 1 dimensional QED.

L = − 1

4g2
FµνF

µν − θ

4π
ϵµνFµν + Ψ̄(i /∂ − /A−m)Ψ .

Massless fermion m = 0: theory is solvable! It has a mass gap
[Schwinger ’62]

Exhibits: screening (m = 0), confinement (m ̸= 0), chiral symmetry
breaking (⟨ψ̄ψ⟩ ≠ 0), . . .
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The lattice Schwinger model

Not solvable for m ̸= 0! Study it by putting it on the lattice in the
Hamiltionian formulation [Banks, Kogut, Susskind ’76]
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Lattice theories in the Hamiltonian formulation are promising (no sign
problem, real time dynamics, . . . ), but are less developed than those
in Lagrangian formulation!
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The lattice Schwinger model

In the last decade, a lot of interest in the Schwinger model from
several communities

• Effort to simulate gauge theories in the Hamiltonian formulation
using tensor network methods. [many people, e.g. the Munich group:

Cirac, Bañuls, . . . ]

• Quantum simulation of gauge theories: the Schwinger model was
experimentally realized using trapped ions in the case of 4 sites
[Martinez et al. ’16] and 6 site [Nguyen et al, ’21]
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The lattice Schwinger model

The Hamiltonian for the Schwinger model is (A0 = 0 gauge)

H =

∫
dx

[
g2

2

(
E (x) +

θ

2π

)2

− iψ†γ5(i∂1 − A1)ψ +mψ†γ0ψ

]

Discretize this by using staggered fermions [Kogut, Susskind ’75].
Avoids fermion doubling problem!

gauge fields Un
.
Unt

⑧- -- -- - ⑧

↓
fermions Xn

,
Xut

In
Qu Lm
-⑧

N
- - 6- -- -

An Xn+ 1 Xn+2 Xu+3

-
New Xen + h
-=(

Ln-1 In (n+ 1 2n
+ 2

⑧ ⑧----

An Xnx Xn+2
5



The lattice Schwinger Hamiltonian

From the continuum

H =

∫
dx

[
g2

2

(
E (x) +

θ

2π

)2

− iψ†γ5(i∂1 − A1)ψ +mψ†γ0ψ

]

to the lattice

H =
g2a

2

∑
n

(
Ln +

θ

2π

)2

− i

2a

∑
n

(
χ†
nUnχn+1 − h.c.

)
+mlat

∑
n

(−1)nχ†
nχn

with the commutation relations {χ†
n, χm} = δnm and [Ln,Um] = δnmUm.
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Gauge invariance

We only care about gauge invariant states: Gauss law

Ln − Ln−1 = Qn ≡ χ†
nχn −

1− (−1)n

2

Arbitrary choice, but adopted by almost all of the literature
(exception: [Berruto, Grignani, Semenoff, Sodano ’98]).

Gauss law allows us to integrate out the electric field

Open boundary conditions Closed boundary conditions
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The Schwinger anomaly

Continuum mass m and lattice mass mlat are not the same.

Continuum massless theory m = 0: chiral symmetry ψ → exp(iαγ5)ψ
is anomalous!

Take Vα, the operator that implements a chiral transformation,
VαψV

−1
α = e iαγ5ψ. On the Hamiltonian it acts

VαHθV
−1
α = Hθ−2α

Chiral transformation changes the theta angle.

What happens on the lattice?
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The Schwinger anomaly on the lattice

Discrete π/2 chiral transformation
on the lattice: one site lattice
translation!

Given the operator that implements this VχnV
−1 = χn+1 we find

that

VHθV
−1 = Hθ+π ⇔ mlat = −g2a

8

Therefore lattice and continuum mass related by [Dempsey, Klebanov,

Pufu, BZ ’22]

mlat = m − g2a

8

Subleading in the continuum limit a → 0, but greatly improves
convergence.
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Improved convergence: Nf = 1

θ = π: Z2 symmetry, order parameter is ⟨Eeff⟩ ≡ 1
N

∑
n ⟨Ln +

θ
2π ⟩.
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• No mass shift:
0.3335± 0.0002 [Byrnes et al.

2002]

• With mass shift:
0.33352± 0.00003
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Not just a quantitative improvement:
Nf = 2

Two flavor Schwinger model at θ = π: fermion masses m1 and m2.

• For m1 = m2 = 0:
gapless, SU(2)1 WZW
model (c = 1 CFT)

• One large mass →
single flavor Schwinger
model
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Nf = 2

Possible scenarios:

->

-
I

m

Scenario 1 [Coleman ’76]
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Scenario 3
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Numerical results

Scenario 3 is the correct one!
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The physics

• Lines of Ising CFTs all the
way to the origin

• Around the origin,
nonperturbative small
wedge where Z2 is broken

• For small m1 = m2 = m,
marginally relevant
perturbation.

Similar to CP breaking in
QCD4 at θ = π.
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Summary and future directions

Today:

1. Careful analysis of continuum theory

2. Improvement of lattice discretization of the model

3. New physics for two dimensional gauge theories.

Path forward:

• Non-abelian gauge theories in 2d : e.g. adjoint QCD2 on the
lattice. recent renewed interest.

• Abelian theories in 3d : go to one dimension higher, consider
Abelian theories such as QED3, . A similar setup has been
studied [Felser, Silvi, Collura, Montangero ’20], but mass shift will
probably play a role here.
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Backup slides
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Improved convergence: Nf = 1

‘Exact’ diagonalization with periodic boundary conditions Keep
L = Na fixed, send N → ∞.

N = 4, shift N = 4, no shift
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Improved convergence: Nf = 2
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