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Introduction



Effective field theory (EFT)

What is it?
When different energy scales of a system are well-separated, we
can integrate out high-energy excitations and focus only on the
low-energy ones, which will be described by a new set of
interactions

A bit more rigorous:

A quantum field theory (QFT), valid only up to a certain energy
scale, in which the low-energy content of the theory is specified in
a controlled series of higher dimensional operators. The coefficients
of this expansion are called Wilson (or EFT) coefficients.
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Bootstrap

The idea:
Systematic application of general principles to constrain observable
quantities. The usual assumptions are causality, unitarity and
crossing symmetry.

In practice:

In Conformal field theories, we can use unitarity and crossing
symmetry to constrain n-point function. Using this method we are
able to compute the dimension of some operators and some OPE
coefficients.
In a general QFT we ”bootstrap” scattering amplitudes.
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Bootstrapping scattering amplitudes

What is it?
We use S-matrix axioms (plus some assumptions) to constrain
2 → 2 scattering amplitudes.

Axioms and Assumptions:

- Unitarity

- Causality

- Crossing symmetry

- Partial wave decomposition in the ultraviolet (UV)

- Infrared (IR) of the theory parametrised by a tree level EFT



Positivity bounds

The idea:
Using only a small set of constraints – where unitarity is explicit –
to get one sided bounds on Wilson coefficients

Results:
People have used this method to get information on QCD, theories
with gravity, SMEFT... [Pham, Truong ’85][Ananthanarayan, et al.

’95][Adams, et al. ’06]

An example:

For scattering of identical scalars g2 ≥ 0.



Using bootstrap methods

What is it?
Follow the same strategy and same goals as the Positivity bounds,
but the method uses of potentially all constraints coming from the
assumptions.

Results:
We are able to get double-sided bounds for most of the coefficients.

Example:

Bounds on higher order coefficients, −10.3 < g3M2

g2
< 3



Bootstrapping photons

Idea:
Bootstrap of 2 → 2 scattering of photons. This was the first
generalisation to scattering of massless spinning particles of the
method.

Aim:
The goal is to investigate the allowed space for EFTs of photons,
e.g. QED or the Standard Model
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... with gravity

What is it?
Bootstrap of 2 → 2 scattering photons with exchange of gravitons.

Challenges:

Graviton exchange create extra terms which are difficult to deal
with. In this framework we will get weaker bounds.
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Method



Assumptions

Let us focus on 2 → 2 scattering of identical scalars to explain the
method.

Infrared:
The IR is parameterised by a tree-level EFT. The amplitude is
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Ultraviolet:
In the UV we use the partial wave decomposition

Ahigh =
∑
J

fJ(s)PJ(1 +
2t

s
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where PJ(x) are the partial waves, known for scalar scattering.



Relation between IR and UV

Dispersion relations:
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γ
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Sum rules:
We will get an infinite number of sum rules relating the IR with
the UV,

2g2 − g3t + 8g4t
2 + . . . = ⟨. . .PJ⟩ ,

4g4 + . . . = ⟨. . .P ′
J⟩ ,

. . . .

Notice that ⟨.⟩ is a positive functional. Using the forward limit
t → 0 we are able to isolate EFT coefficients,
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How to get bounds

Optimisation method:

The strategy to get bounds from sum rules is the following,{
Max/Min A

s.t. 0 ⩽ (±A, 1) · (g2(s, J), g3(s, J)),

valid for each value of J and s > M2.

Example of result:

Using for instance Mathematica we can solve it and obtain the

result −10.3 ≤ g3M2

g2
≤ 3. In the same way we can get bounds for

other coefficients.



Generalisations

Spinning particles:

We have to deal with multiple amplitudes, and positivity translates
into semidefinite positivity.

With gravity:

We cannot use the forward limit, due to the graviton pole,
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We generalise from a derivative functional to an integral one.



Conclusions



Results without gravity

An example of bounds of EFT coefficients.
In the left figure we show various upgrades of the method with
different colours. In the other figure we zoom in the allowed
region, adding some partial UV completions.

5 10
M
4
g4,1/g2

-6

-4

-2

2
M
4
g4,2/g2

-1.0 -0.5 0.5 1.0
M
4
g4,1/g2

-0.2

0.2

0.4

0.6

0.8

1.0

M
4
g4,2/g2

ϕ,a
e

ẽW



Results with gravity

An example of bound with gravity.
- Addition of extra IR regulator to have well define bounds.
- Bounds not strong enough to prove the Weak Gravity Conjecture.
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Sum up

Our aim is to try to understand how much we can constrain the IR
physics from very general UV assumptions.

Results:

- generalise the bootstrap to scattering of spinning particles

- ... with gravity

- starting the exploration of allowed space for tree-level EFTs
of photons



Future plans

Explore theories of gravity in higher dimensions using spinning
partial waves [Burić, F.R., Vichi ’23]

More information in the bootstrap → stronger bounds.

- Adding scattering of other particles

- Multiparticle scattering



Thank you!
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