

Coordina

Partner

Partner

Partner

François Morellet Random Distribution of 40,000 Squares using the Odd and Even Numbers of a Telephone Directory 1960

In-Silico generation of random bit streams

the value of unpredictability

	Organization	Organization	Massimo	Cacci Contact	a Contact person email
	full name . UNIV	short name / 'effe number	l'Insubria	person Chame D	dom Power s.r.l.
ator	Università	UNINS/	University	Massimo	massimo.caccia@uninsubria.it
	degli Studi dell'Insubria	1999855334377 C	o.caccia@	r a nciao r	mpower.eu
r 2	AGH-	AGH/	University	Wojciech	kucewicz@agh.edu.pl
	University of Science and Technology	999844573	6	cewicz	
r 3	Nuclear Instruments	NI/904737916	SME	Andrea Abba	abba@nuclearinstruments.eu
r 4	Quantum	QFA/	SME	Marcello	marcello.esposito@outlook.it
	Financial	904273092	May 24 ^s	Esposito ^{t,} 2023	

2. introduction:

WHAT FOR?

Unpredictability to preserve the predictability of our clockwork world

the RSA (Rivest-Shamir-Adleman) public key cryptography protocol uses two random prime numbers of length up to 2048 bits to generate the keys

1. introduction: WHAT FOR?

Unpredictability to preserve the predictability of our clockwork world

Image encryption is also relying on random single-bit arrays:

Comm. Networks 2016; algorithm using chaos and Security encryption automata, hybrid image .c.1386 cellular Φ S of-life 0.1002 \triangleleft σ Φ 2 \overline{O} Ð σ \square Ω Murugar S 5 Conway' \bigcirc 9:63 ш.

1. introduction: WHAT FOR?

secure transmission & control)

CRYPTOMATHIC

Generating Cryptographic Keys: Will Your Random Number Generators (PRNGs) Do The Job?

by Chuck Easttom (guest) on 22. February 2017

Key Management

https://www.cryptomathic.com/news-events/blog/generating-cryptographic-keys-with-random-number-generators-prng

there is definitely a hype about Random bit streams, not only for crypto but also for gaming, virtual reality, Monte Carlo simulations and IoT (notably car security, smart houses, drones to guarantee authentication and

Primary Market:

cybersecurity & simulation

Quantum Random Number Generators: A Ten-year Market Assessment

Report IQT-QRNG-0121 Published January 19, 2021

Main findings: expected market volume of \$7.2B by 2026

most relevant segment: Data Centers [\$3.1B]

significant interest by financial service providers for improved Monte Carlo simulations & data protection [\$2.2B]

Secondary Market: gaming & gambling

Georges de la Tour The dice players (1651 c.a.)

Main applications:

Replacement market of

"physical gambling devices"

[~ 7 Million cabinets worldwide, 5 years lifespan \Rightarrow ~1.4M new devices/year]

Random number streaming to on-line platforms

market potential: 2.

D E[™]

INSI

QUANTUM

TECHNOLOGY

	Total Market by Product Type											
	2021	2022	2023	2024	2025	2026	2027	2028	2029		2030	
Chips	1.2	48.5	159.2	455.6	1,038.7	1,771.4	2,688.8	3,672.1	4,877.9		6,54	
Extension Cards	85.6	210.7	1,014.7	1,560.8	1,768.0	2,388.7	2,915.5	3,414.4	3,841.2		4,57	
Standalone Devices	180.0	1,530.0	2,594.5	3,658.0	3,356.7	3,035.8	3,712.1	3,874.1	3,904.8		3,13	
Total (\$M)	266.8	1,789.2	3,768.4	5,674.4	6,163.3	7,195.9	9,316.5	10,960.7	12,623.9		14,25	
[

Installed Units vs Time

the essence 3 o f

HOW TO GENERATE AN UNPREDICTABLE RANDOM NUMBER?

It is always nice to consider an artist's point of view:

"With Random Distribution, the purpose of my system was to cause a reaction between two colours of equal intensity. I drew horizontal and vertical lines to make 40,000 squares. Then my wife or my sons would read out the numbers from the phone book (except the first repetitive digits), and I would mark each square for an even number while leaving the odd ones blank. The crossed squares were painted blue and the blank ones red. For the 1963 Paris Biennale I made a 3-D version of it that was shown among the Groupe de Recherche d'Art Visuel installations (and re-created it again on different occasions). I wanted to create a dazzling fight between two colours that shared the same luminosity. This balance of colour intensity was hard to adjust because daylight enhances the blue and artificial light boosts the red. I wanted the visitors to have a disturbing experience when they walked into this room – to almost hurt their eyes with the pulsating, flickering balance of two colours. I like that kind of aggression."

excerpt from https://www.tate.org.uk/context-comment/articles/65-38-21-4-72

François Morellet (1926-2016) Random Distribution of 40,000 Squares using the Odd and Even Numbers of a Telephone Directory 1960 RINDOM MOMA, New York

3. the essence of random number generation: HOW TO GENERATE AN UNPREDICTABLE

HOW TO GENERATE AN URANDOM NUMBER?

PRNG

(PseudoRandom Number Generators) are essentially a piece of software code ⇒ they deterministic and in principle

predictable

$$x_n\equiv ax_{n-1}+b\ (mod\ m)$$

an example of linear congruential generator

J. Von Neumann: Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

Von Neumann, John (1951). "Various techniques used in connection with random digits" (PDF). National Bureau of Standards Applied Mathematics Series. **12**: 36–38.

TRNG

(True Random Number Generators) are essentially coin flipping, namely get bits out observing unpredictable natural phenomena

http://glee.wikia.com/wiki/File:281735_1342370254-coin-flip.gif.gif

3. the essence of random number generation:

HOW TO GENERATE AN UNPREDICTABLE RANDOM NUMBER?

PRNG

(PseudoRandom Number Generators)

Fast, cheap & reasonably easy. However:

software Random Number Generation is PSEUDO
 code can be bugged
 and it may have a BACKDOOR

changes to commercial software to weaken encryption, and lobbying for encryption standards it can crack.

TRNG

(True Random Number Generators)

Extracting bits from the observation of natural phenomena is not trivial and you may suffer from

- "coin bias" by the embodiment of a great principle
- weakness against environmental parameters
- a significant "attack surface", conditioning the device in use
- low bit rate

the Random Power principle:

HOW DO WE DO IT?

Inspired by Forrest Gump, we say:

RADIOACTIVE IS WHAT RADIOACTIVE DOES

emission by a radioactive source is due to the quantum laws of Nature

decays of unstable nuclei are unpredictable

the sequence of detected decays can be used to generate random bits with different recipes:

Check the parity of the number of pulses in a time window

pre-define the time window in a way that is equally like to have or not to have a single pulse

The idea behind handy, cost effective, simple, robust, providing sequences of pulses mimicking radioactive decays.

Sequence of pulses by the decay of a radioactive source in a nuclear physics detector

is to replace a radioactive source with something safer, more

RINDOM

> The generator, an array of Single Photon Avalanche Diodes, namely p-n junctions operated beyond the breakdown voltage:

A pioneering development by Prof. S. Cova at Politecnico di Milano

Cova, S., Ghioni, M., Lacaita, A. L., Samori, C., and Zappa, F. "Avalanche photodiodes and quenching circuits for single-photon detection", Applied Optics, 35(12), 1956–1976 (1996)

Simulation of an avalanche development

- Very shallow p-n junction $\rightarrow \sim 1 \, \mu m$
- High electric field
- Mean free path

→ > 3 x 10⁵ V/cm **→** ≈ 0.01 µm

Courtesy of Ivan Rech, Politecnico di Milano [50 µm cell size]

Multiplication by about 1 000 000

Photon induced charge carrier generation RNDOM POWER

the state-of-the-art room T detectors with single photon sensitivity and photon-number resolving capability:

SiPM may be seen as a collection of binary cells, fired when a photon in absorbed

[in principle, a NATIVE DIGITAL DEVICE]

Not indexed arrays of SPAD, with a single output node, are nowadays known as Silicon Photomultipliers,

"counting" cells provides an information about the intensity of the incoming light:

the state-of-the-art room T detectors with single photon sensitivity and photon-number resolving capability:

SiPM may be seen as a collection of binary cells, fired when a photon in absorbed

[in principle, a NATIVE DIGITAL DEVICE]

Not indexed arrays of SPAD, with a single output node, are nowadays known as Silicon Photomultipliers,

histogram of the response to a high statistics of low intensity light pulses

The name of the game: charge carriers can be generated "spontaneously", also when no light is illuminating the sensor

A lesson from the past, when this was known since the early days of the Silicon technology development:

1. INTRODUCTION

MOST reverse biased p-n junctions in silicon have their avalanche breakdown caused by microplasma effects. Microplasmas are small regions within the junction,¹ where a local disturbance of the electrical field is believed to reduce the breakdown voltage to a value below the breakdown voltage of the surrounding uniform junction.²⁻⁵ As voltage is increased from low values microplasma breakdown is generally characterized by random "on-off" current fluctuations so long as currents remain below a critical value (40 to 120 μ A).⁶⁻⁸

from paper

PHYSICAL REVIEW

VOLUME 94, NUMBER 4

MAY 15, 1954

Avalanche Breakdown in Silicon

K. G. MCKAY Bell Telephone Laboratories, Murray Hill, New Jersey (Received December 23, 1953)

JOURNAL OF APPLIED PHYSICS

Model for the Electrical Behavior of a Microplasma*

VOLUME 35, NUMBER 5

ROLAND H. HAITZ[†]

Shockley Laboratory, Clevite Corporation Semiconductor Division, Palo Alto, California (Received 5 November 1963)

FIG. 5. Avalanche current as a function of time at low temperatures. The group character of the avalanche pulses is obvious.

The complex current fluctuations observed in connection with microplasma breakdown can be explained by a simple model containing two constants: extrapolated breakdown voltage V_b and series resistance R_s ; and two continuous probability functions: turnoff probability per unit time $p_{10}(I)$ as a function of pulse current I and turn-on probability per unit time p_{01} . Experimental methods allowing an accurate measurement of these four quantities are described. The new concept of an extrapolated breakdown voltage V_b is discussed based on two independent measurements: one of secondary multiplication and the other of instantaneous current, both as a function of voltage. Within the experimental accuracy of 20 mV both methods extrapolated to one and the same breakdown voltage. The turnoff probability $p_{10}(I)$ is determined by a new combination of experimental techniques to cover the current range from 5 to 70 μ A with a variation of 11 decades for $p_{10}(I)$. The observation of a narrow turnoff interval is explained quantitatively.

VOLUME 36, NUMBER 10 F APPLIED PHYSICS

Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes^{*}

ROLAND H. HAITZ

Shockley Research Laboratory, Semiconductor Division of Clevite Corporation, \$ Palo Alto, California (Received 16 November 1964)

The name of the game: charge carriers can be generated "spontaneously", also when no light is illuminating the sensor

Fig. 8. Representation of the different sources of primary dark events and their location in the SPAD structure.

after A. Gola, C. Piemonte, NIM A926 (2019) 2-15

Key issues:

* in SiPM, the Dark Count Rate is O(1 KHz)/cell, 50 µm pitch (it may be higher for SPAD arrays in CMOS technology)

- * provided the nature of the Dark Pulses, we have a significant dependence on Temperature
- * forget-me-not: the Over-voltage is affecting the triggering probability

Thermal generation of carriers by states in the bang-gap

(Shockley-Read-Hall statistics), where trapping and de-trapping is increased by the high electric field in the junction. The **Generation rate** can be written as:

$$\vec{\sigma} = \frac{n_i}{2 \cdot \cosh\left(\frac{E_0 - E_t}{kT}\right)} N_t \sigma v_{th} = \frac{n_i}{\tau_{g0}}$$

 $E_0 =$ Fermi level E_t = trapping level n_i = intrinsic carrier concentration N_t = trapping concentration σ = trapping cross section v_{th} = thermal velocity

 $G = \frac{(1+\Gamma)n_i}{\tau_{g0}}$ Γ "boost" by the 10⁴ field 10³ Temperature (K) 200 100 67 50 1.E+06 10[°] Electric field (V/cm) IEEE Trans. s 64 (2) (2017) 521 1.E+05 1.E+04 (z^{mm}/zH) 1.E+03 ස් 1.E+01 al 1.E+00 F. Acerbi, Electron D 526. 1.E-01 1.E-02 RINDOM 1.E-03 20 0 5 10 15 25 1000 / Temperature (K⁻¹)

The essence of : turning unpredictable "Dark Pulses" into bits

1. tag & time stamp the occurrences of the random pulses

2. analyse the time series of the pulses:

*bit 1: **Δt**₁₂ vs **Δt**₃₄ *bit 2: Δt₂₃ vs Δt₄₅ *bit 3: **Δt₅₆** vs **Δt₇₈** *bit 4: **Δt₆₇ vs Δt₈₉**

the Random Power principle:

This is the essence of

RIND0M

A genuine Q(quantum)-True Random Number Generator, namely a Quantum Coin Flipper

providing virtually endless streams of

shielded against any bias by the fundamentals of **Quantum Mechanics**

-Italian Patent granted on Sept.17th, 2020

- 2019 Int'l: PCTIB2019/058340 - application extended to EU, US, China, JP, Korea in April 2021

RANDOM BITS → CRYPTOGRAPHIC KEYS

5. glance at competitors: a ARE WE ALONE IN THE UNIVERSE?

	IDQ	Rindom Por Er
History	Established in 2001	Starting-up
Technology floor	QTRNG platform + services	Minimum Viable Product
Complexity	HIGH	LOW
Efficiency	LOW	HIGH
Robustness	LOW	HIGH
Miniaturisation	BIG chip	SMALL chip viable
Cost of the single generator board	1000+ EUR	500 EUR

https://www.idquantique.com N Quantiq

18

+ a handful of other players:

Major advantage of the Random Power technology, fully CMOS compliant, offering the possibility to integrate the device into a custom chip with advanced features

glance at competitors: 5. a

self-amplification of the seeds in excess of a factor 1 000 000, making pulse tagging robust bit extraction through a non parametric local analysis of the time series of pulses no influence of temperature on the randomness of the occurrences

no need of post-processing to correct left-over bias maximum bit/occurrence rate = 40% [2 random bits every 5 pulses]

current rate at the 100Kbps rate for every mm² of Silicon sensor

potential to embed the system into an ASIC [Application Specific Integrated Circuit]

NNE R

6. state - of - the - art:

WHERE ARE WE NOW

The MINIMUM VIABLE PRODUCT [MVP], the progenitor of a class of Quantum Random Bit Generators:

Developed thanks to the **seed capital [100 000 €]** granted by

which selected Random Power as one of 170 "breakthrough projects" out of 1211 submissions

Qualified according to the NIST standards (National Institute of Standard & Technology)

6. state-of-the-art: WHERE ARE WE NOW

8 cm

Upon request, bits can be routed on pins

FTDI chip for data routing on the USB

FPGA embedding a proprietary TDC and implementing the bit extraction + real-time sanity checks (MONOBIT&RUNS) + conditioning function (SHA-256)

Amplification & discrimination

Single generator (either 1x1 mm2 or 3x3 mm2 - Bit rate for the smaller area device: O(100 kbps) - operated with overvoltage stabilisation against Temperature variations

state-of-the-art: 6.

								final	AnalysisRe	port_PART2.t>	‹t						
RESULTS	FOR	THE	UNIF	ORM	ΙΤΥ (0F P	-VALI	JES A	ND THE PR	OPORTION OF	PASSING SEQUEN	CES					
gene TestFW8	rato _4Bi	r is tNoRe	<th>sers, be_1</th> <th>/luca GB_Pa</th> <th>a/Do art2</th> <th>cume bin</th> <th> nts/R ></th> <th>andom_Pow</th> <th>er/ProgramAn</th> <th>dTechnical/ATT</th> <th> RACT_Eu_</th> <th>Board_</th> <th>Fw8/</th> <th></th> <th></th> <th>➢ A prot</th>	sers, be_1	/luca GB_Pa	a/Do art2	cume bin	 nts/R >	andom_Pow	er/ProgramAn	dTechnical/ATT	 RACT_Eu_	Board_	Fw8/			➢ A prot
C1 C2	С3	C4	C5	C6	C7	C8	C9	C10	P-VALUE	PROPORTION	STATISTICAL 1	EST					about 1
100 110	- <u></u> 95	93	90	90	114	101	98	109	0.682823	986/1000	Frequency						abouti
97 102	94	103	107	97	105	106	102	87	0.941144	993/1000	BlockFrequ	ency					
95 95	101	100	113	106	93	100	89	108	0.842937	989/1000	Cumulative	Sums					
94 112	117	90	93	91	89	96	123	95	0.125927	987/1000	Cumulative	Sums					
100 93	91	112	93	112	99	110	101	89	0.647530	992/1000	Runs						
105 91	96	80	121	99	85	100	107	116	0.092597	989/1000	LongestRur						
100 104	89	110	97	88	126	84	99	103	0.148653	992/1000	Rank						Results
95 109	103	113	85	94	90	100	106	105	0.6308/2	995/1000		T	1-+-				
104 98	112	89	104	90	100	104	115	95	0.032955	987/1000	Nonuverlap	pinglemp	late				• -
111 95 111 100	117	00	90	100	100	101	117	90	0.790139	901/1000	NonOverlap	pinglemp					with no
86 01	110	101	101	08	20	107 107	202	101	0.514124	900/1000	NonOverlar	pingTemp	late				
93 112	93	103	91	89	94	90	115	111	0.498313	989/1000	NonOverlar	ningTemp	late				
84 106	101	109	86	119	111	96	94	94	0.249284	988/1000	NonOverlar	pingTemp	late				
114 92	98	96	105	105	101	100	83	106	0.682823	992/1000	NonOverlag	pinaTemp	late				expecte
117 87	98	101	100	106	91	94	105	101	0.697257	991/1000	Non0verla	pingTemp	late				
90 93	97	107	99	89	100	116	108	101	0.689019	994/1000	NonOverlap	pingTemp	late				
99 108	98	99	116	104	98	85	96	97	0.743915	991/1000	Non0verlap	pingTemp	late				
88 93	103	101	112	94	111	99	100	99	0.829047	988/1000	Non0verlap	pingTemp	late				
96 97	103	103	106	108	114	97	93	83	0.651693	987/1000	NonOverlap	pingTemp	late			,	
108 95	97	109	84	94	101	101	91	120	0.388990	988/1000	NonOverlap	pingTemp	late		•		Two te
								•	~				•				

series of tests on non-overlapping templates

80	98	115	100	98	115	107	91	83	113	0.106877	993/1000	OverlappingTemplate
86	116	121	101	91	87	96	101	87	114	0.084037	990/1000	Universal
97	90	107	116	110	95	103	93	92	97	0.668321	987/1000	ApproximateEntropy
70	62	54	60	55	66	60	63	77	65	0.668486	626/632	RandomExcursions
62	69	58	70	58	61	56	71	63	64	0.909311	626/632	RandomExcursions
60	53	59	62	76	72	60	59	66	65	0.681642	620/632	RandomExcursions
70	64	83	45	62	69	70	65	51	53	0.040275	622/632	RandomExcursions
66	69	69	73	73	73	38	49	52	70	0.009611	627/632	RandomExcursions
65	52	67	82	68	54	51	63	72	58	0.136536	627/632	RandomExcursions
61	55	60	72	66	71	67	56	55	69	0.711017	626/632	RandomExcursions
47	61	62	58	71	63	71	61	68	70	0.553450	625/632	RandomExcursions
60	57	66	62	58	61	67	67	73	61	0.941564	624/632	RandomExcursionsVariant
60	70	43	60	64	58	58	88	64	67	0.030676	622/632	RandomExcursionsVariant
66	58	51	65	51	61	72	72	71	65	0.447593	624/632	RandomExcursionsVariant
63	67	59	46	67	60	68	70	73	59	0.483876	623/632	RandomExcursionsVariant
61	67	58	69	63	74	48	60	66	66	0.615645	624/632	RandomExcursionsVariant
75	62	63	58	63	55	66	54	71	65	0.717488	624/632	RandomExcursionsVariant
68	63	66	54	57	65	63	67	56	73	0.827336	620/632	RandomExcursionsVariant
75	54	64	57	65	64	56	62	64	71	0.733547	623/632	RandomExcursionsVariant
76	68	70	56	55	50	66	52	64	75	0.176734	624/632	RandomExcursionsVariant
89	63	57	59	59	55	58	68	63	61	0.134074	624/632	RandomExcursionsVariant
67	68	61	57	60	69	66	63	63	58	0.979797	624/632	RandomExcursionsVariant
65	64	62	71	58	68	67	53	60	64	0.917568	626/632	RandomExcursionsVariant
71	58	56	62	75	62	67	64	53	64	0.701268	626/632	RandomExcursionsVariant
64	71	49	62	61	69	69	59	59	69	0.694743	626/632	RandomExcursionsVariant
61	65	54	59	63	63	64	76	62	65	0.879806	626/632	RandomExcursionsVariant
58	55	57	67	65	66	54	66	76	68	0.642077	629/632	RandomExcursionsVariant
46	64	65	61	64	61	81	59	75	56	0.150772	624/632	RandomExcursionsVariant
50	56	65	67	74	67	51	63	73	66	0.353061	629/632	RandomExcursionsVariant
106	107	87	107	94	109	100	83	92	115	0.352107	989/1000	Serial
105	100	94	98	96	95	96	101	95	120	0.790621	991/1000	Serial
105	97	89	101	96	106	92	112	105	97	0.875539	991/1000	LinearComplexity
		. – –										
The	min:	Imum	pass	s rat	te fo	or ea	ach	stat:	istic	al test wit	the exception	lon of the
ranc	dom e	excu	rsio	n (va	ariar	it) 1	test	1S 8	appro	ximately =	980 for a	
samr	sample size = 1000 binary sequences.											

The minimum pass rate for the random excursion (variant) test is approximately = 618 for a sample size = 632 binary sequences.

For further guidelines construct a probability table using the MAPLE program provided in the addendum section of the documentation.

- o-randomness farm based on 10 boards have been collecting .5 Tb, qualified through the NIST and TESTU01 suites.
- show that the stream looks extremely "white", essentially failures on the raw data beside what can be statistically d.
- ests have been implemented in firmware to guarantee realtime sanity checks:
- * MONOBIT: essentially testing the asymmetries between 0's and 1's in a bit string:
 - 1 0
- * **RUNS**: testing the statistics of the number of sequences of identical bits in a string

7. roadmap:

WHAT'S NEXT?

≈]05€ [2021-2022]

GO TO THE MARKET and EXPLOIT THE MVP

N&C CONSULTING

GIVING IDEAS THE

HIGHEST

Enhance IP protection build int'l collaborations grant seeking

≈n x 10⁵ € [2022-2023]

➢ GO MACRO & SECURE:

development of "agnostics" applications

e.g. LINUX entropy pool refill

Time & Money ➢ GO MICRO & SECURE:

High End applications [e.g. Differential privacy is one of our priorities, even if FULL HOMOMORPHIC ENCRYPTION is still the holy grail]

7. roadmap:

Phase II:

submission Sept. 20th, 2021

- ▶ notification of approval Jan. 31st, 2022
- Duration: May 2022 to August 2024
- ▶ funding: 2 MEUR
- selection & competitiveness:

1211 submissions in Phase 1 → 170 approved → 87 submissions for phase II (68 R&D proposals) → 18 R&D approved

combined success rate: 18/1211 = 1.5%, so we did well!

7. roadmap:

Our consortium:

leading party

Organization

Organization type¹

Contact

weeroc

Contact person email

7. roadmap

Our main goals:

design a FIPS-compliant ASIC embedding a SPAD array in standard CMOS technology:

raw bit rate: 1 Mbps

FIPS mode (NIST DRBG): 4096 Bytes in 1050 µs (31.2 Mbps)

with prediction resistance

- **bits delivered in an encrypted stream**
- expected to be back from the foundry in Dec. 2023

design a scalable multi-generator system based on an array of SiPM and a LIROC front end ASIC by LIROC

 Table 2 - LIROC main features and performances

Detector Read-Out	SiPM, SiPM array
Number of Channels	64
Signal Polarity	Positive or Negative (selectable ASIC-wise)
Sensitivity	Trigger on 1/3 of photo-electron
Timing Resolution	Better than 20 ps FWHM on single photo-electron Better than 5ns double-peak separation on single photo-electron
Dynamic Range	Over 100MHz photon counting rate
Packaging & Dimension	BGA 20x20 mm2 Flip-Chip low inductance packaging technology

Where the bound expected in June 2023 POWER

7. roadmap

State-of-the-art (May2023 update):

design a FIPS-compliant ASIC embedding a SPAD array in standard CMOS technology (TJ 180 nm node):

*** Entropy Producer:**

- SPAD test structures under test
- on-cell functions and signal compression scheme defined
- DC-DC converter for biasing designed
- protocol for rate stabilisation vs T defined
- NIST Real-time tests implemented
- two different TDC designs implemented

*** Entropy Consumer:**

- NIST DRBG implemented (based on AES256)
- Known-Good-Answer tests implemented
- Encryption of the bit stream implemented
- single user authentication implemented
- *** Integration & verification on the way**
- ***** Packaging under study
- * planned tape-out: Early September 2023

design a scalable multi-generator system based on an array of SiPM and a LIROC front end ASIC by LIROC

* design completed, production ongoing * box with anti-tamper micro-switch and ventilation designed and being produced

Rindom Pover

www.randompower.eu

Established in June 2021

This project has received funding from the ATTRACT project funded by the EC under Grant Agreement 777222

\$ lorenza.paolucci@randompower.eu