QUANTUM COMPUTING

An overview on the latest QC technologies and future strategies

Gabriella Bettonte, PhD g.bettonte@cineca.it

The quantum hype

https://www.elsevier.com/solutions/scopus/research-and-development/quantum-computing-report

Publication rate on quantum computing has steeply increased

https://qureca.com/overview-on-quantum-initiatives-worldwide-update-2022/

Quantum computing in a nutshell

Qubit: a basic unit of quantum information. Each qubit have two pure state vectors $|0\rangle$ and $|1\rangle$. Any state of a qubit is a lineat combination of the two pure states: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, where α , $\beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$

Operators: $|\phi_{t+1}\rangle = U |\phi_t\rangle$

- Unitary $U^{\dagger}U = UU^{\dagger} = I$, with I identity matrix and U^{\dagger} is the conjugate transposed of U
- Reversibile

To describe a quantum machine:

- the number of available qubits
- the error rate (or noise) and the decoherence time
- the architecture and the qubits connection
- Gate-based model vs Quantum annealing

Quantum computing timeline

Figure 55: quantum computing key events timeline from 1990 to 2020. (cc) Olivier Ezratty, 2020.

QC: a very multi-disciplinary subject

physics

electromagnetism quantum physics quantum matter thermodynamics fluids mechanics photonics

engineering materials design electronics engineering cryogenics π mathematics linear algebra groups theory analysis complexity theories

human sciences philosophy epistemology sociology technology ethics economics of innovation R&D policy making geopolitics startups ecosystem

Figure 3: the many scientific domains to explore when being interested in quantum technologies. That's why you'll love this book if you are a curious person. (cc) Olivier Ezratty, 2021-2022.

Why Quantum Computing?

Figure 6: simplified view of the quantum computing theoretical promise. Before delivering this promise, quantum computers may bring other benefits like producing better and more accurate results and/or doing this with a smaller energy footprint. (cc) Olivier Ezratty, 2022.

Why Quantum Computing?

Moore's Law predicted successfully that the size of transistors would halve every two years, but now it seems to have reached its limit.

transistors are approaching a size s.t. the laws of quantum mechanics impact their functioning

Reference: EETimes article on NAND scaling, 3/22/2010

Potential applications of QC

ISSUES:

- 1. Quantum computers enable substantial **speed-up** to a small set of computational problems.
- 2. For other problems, quantum computers **do not seem** to perform better than classical computers
- 3. Decoherence: unwanted interaction between a quantum computer and its environment (nearby electric fields, warm objects...) \rightarrow solution: quantum error correction.

The three main areas that the quantum computing revolution **may** impact are:

- cryptography,
- optimization,
- simulation of quantum systems

Quantum Computing is different

QUANTIZED COLUMNS

Q 22

What Makes Quantum Computing So Hard to Explain?

To understand what quantum computers can do — and what they can't — avoid falling for overly simple explanations.

"Quantum computers aren't the next generation of supercomputers – **they're something else entirely."** Scott Aaronson

→ we need to understand the fundamental physics that drives the theory of quantum computing.

Quantum vs Classical

For small *problems* solving it with a quantum computer will be **slower** and **more expensive** than solving it classically \rightarrow only as *the problem size* grows the quantum speedup appears

The difficulty is not so much proving that a quantum computer can do something quickly, but convincingly arguing that a classical computer can't!

conjectured quantum speedups have repeatedly gone away when classical algorithms were found with similar performance:

Quantum Recommendation Systems

Iordanis Kerenidis * Anupam Prakash [†]

September 23, 2016

A quantum-inspired classical algorithm for recommendation systems

Ewin Tang

May 22, 2018

Abstract

A recommendation system uses the past purchases or ratings of n products by a group of m sers, in order to provide personalized recommendations to individual users. The information is edoled as an $m \times n$ preference matrix which is assumed to have a good rank k approximation

Abstract

A recommendation system, which suggests products to users based on data about user preferences, is typically modeled as a problem of

Quantum computers

There is not just one category of quantum computers, but many!

Figure 203: the different computing paradigms with quantum systems, hybrid systems and classical systems. (cc) Olivier Ezratty, 2022.

Quantum computing hardware

Figure 263: a map of key research lab and industry vendors in quantum computing hardware per qubit type. (cc) Olivier Ezratty, 2022. Qubits drawing source: <u>Scientists are close to building a quantum computer that can beat a conventional one</u> by Gabriel Popkin in Science Mag, December 2016. I consolidated the logos lists since 2018. It's incomplete for the research labs at the bottom but rather exhaustive for the vendors at the top.

Quantum annealing

annealers

quantum

Quantum computing paradigm and technology based on the adiabatic theorem

- mature **development tools** offering.
- large number of **software startups**, particularly in Japan and Canada.
- quantum annealers are available in the cloud by D-Wave and Amazon Web Services.
- the greatest number of well documented case studies in many industries although still at the proof of concept stage.
- most universal qubits gates algorithms can be have an equivalent on quantum annealing.

- only one operational commercial vendor, D-Wave.
- computing high error rate.
- no operational proof of quantum advantage.
- most commercial applications are still at the pilot stage and not production-scale grade but this is also the case for all gate-based quantum computers.
- all algorithms are hybrid, requiring some preparation on classical computers.

Figure 270: quantum annealers pros and cons. (cc) Olivier Ezratty, 2022.

Superconducting

Superconducting qubits are the most common nowadays

Noisy and do not scale well

qubits

superconducting

- **key technology** in public research and with commercial vendors (IBM, Google, Rigetti, Intel, Amazon, OQC, IQM, etc).
- record of 127 programmable qubits with IBM.
- constant progress in noise reduction, particularly with the cat-qubits variation which could enable a record low ratio of physical/logical qubits.
- many existing enabling technologies: cryostats, cabling, amplifiers, logic, sensors.
- potentially scalable technology and deployable in 2D geometries.

- qubit coherence time usually < 300 μs.
- high **qubits noise levels** with most vendors.
- cryogeny constrained technology at <15 mK.
- heterogeneous qubits requiring calibration and complex micro-wave frequency maps.
- cabling complexity and many passive and active electronic components to control qubits with micro-waves.
- **qubit coupling limited** to neighbor qubits in 2D structures (as compared with trapped ions).
- qubits size and uneasy miniaturization.

Figure 279: superconducting qubits pros and cons. (cc) Olivier Ezratty, 2022.

Cold atoms

- scale up to a thousand qubits
- potentially also be used in gate-based quantum computing

qubits

cold atoms

cold atoms PASQAL ColdQuanta

- long qubit coherence time and fast gates.
- operational systems with 100-300 atoms.
- identical atoms, that are controlled with the same laser and micro-wave frequencies (but dualelements architectures are investigated).
- works in both **simulation** and **gate-based** paradigms, but still with difficulty for gate-based.
- reuse trapped ions qubits tools for qubits readout with fluorescence and CCD/CMOS detection.
- no need for specific integrated circuits.
- uses standard apparatus.
- low energy consumption.

- acceptable quantum gates error rate although not "best in class".
- **crosstalk** between qubits that can be mitigated with two-elements systems.
- adapted to simulation more than to universale gates computing.
- not yet operational QND (quantum non demolition) measurement that is required for QEC and FTQC.
- control lasers and optical not scaling well beyond one thousand qubits with the current state of the art.

Figure 398: pros and cons of cold atoms quantum computers and simulators. (cc) Olivier Ezratty, 2022.

Trapped ions

best fidelities so far

• hard to scale beyond about 40 qubits

trapped ions qubits

- identical ions => no calibration required like with superconducting/electron spin qubits.
- good qubits stability with best in class low error rate.
- long coherence time and high ratio between coherence time and gate time => supports deep algorithms in number of gates.
- entanglement possible between all qubits on 1D architecture. It speeds up computing.
- works at 4K to 10K => simpler cryogeny than for superconducting/electron spins.
- easy to entangle ions with photons for long distance communications.

- entanglement doesn't seem to scale well with a large number of ions.
- questionnable scalability options beyond 50 qubits (ions shuttling, 2D architectures, photon interconnect).
- relatively slow computing due to slow quantum gates which may be problematic for deep algorithms like Shor integer factoring.

Figure 375: pros and cons of trapped ions qubits. (cc) Olivier Ezratty, 2022.

Quantum algorithms

Figure 551: the breadth of science domains covered by quantum algorithms. Source: <u>Silicon Photonic Quantum Computing</u> by Syrus Ziai, PsiQuantum, 2018 (72 slides).

Quantum algorithms

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@microsoft.com. (Alternatively, you may submit a pull request to the repository on github.) Your help is appreciated and will be <u>acknowledged</u>.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring Speedup: Superpolynomial Description: Given an *n*-bit integer, find the prime factorization. The quantum algorithm of Peter Shor

Navigation

Algebraic & Number Theoretic Oracular Approximation and Simulation Optimization, Numerics, & Machine Learning Acknowledgments References

quantum algorithms map

Figure 553: a quantum algorithms map and their interdependencies. One interesting example comes with QSVT which can be used to generate search, phase estimation and Fourier transforms. (cc) Olivier Ezratty, 2022, inspired by a schema found on <u>Quantum</u> <u>Computing Algorithms</u> by Andreas Baertschi, 2019 (45 slides).

HPC and Quantum computing

Take home message

Quantum computing is not :

- a magical solution.
- a replacement tool to current High-Performance Computers (HPC)

Most of today's classical computing problems and software are not at all relevant use cases for QC.

As consequence:

- QC will not entirely replace classical legacy technologies.
- QC is a complement to HPC instead of being a replacement technology.

probably we won't have a quantum desktop, laptop or smartphone to run our usual digital tasks!

Cineca Quantum Computing Lab

Italian and European QC

Some introduction references

Understanding Quantum Technologies

Fifth edition 2022 Olivier Ezratty

QUANTUM COMPUTING SINCE DEMOCRITUS

SCOTT AARONSON

QUANTUM COMPUTING FOR COMPUTER SCIENTISTS

QUANTUM COMPUTING

An overview on the latest QC technologies and strategies

Gabriella Bettonte, PhD g.bettonte@cineca.it

