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QuantumTEA definition
Quantum Tensor-Network Emulator Applications

● Tensor network emulators for quantum systems;

●                    Quantum computer emulator powered by tensor networks;

● Emulates complex quantum systems “via quantum circuits” with a large number of qubits O(100);
● Run general-purpose quantum circuits (algorithms).
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Quantum Computing and Simulation Center

● QuantumTEA is developed in the context of QCSC project;

● World Class Research Infrastructures (WCRI) project of University of Padua;

● Objectives of QCSC:
– Establish one of the first general-purpose quantum computer in Italy at the Department of Physics and Astronomy of 

the University of Padua;
– Create a competence center to guide and support the development and the inclusion of quantum technologies in 

the Italian academic and business environment.



3

QCSC partners
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Why develop a quantum emulator? (1/2)
● Quantum computers are not production-ready yet;
● Today's quantum computers are:

● very noisy systems with a limited number of qubits;
● difficult to control and to isolate from the surrounding

environment;
● Large number of computation errors, impossible

to correct with quantum error correction algorithms.
A view inside the IBM Quantum System One



Why develop a quantum emulator? (2/2)
● With emulators we can:

● Validate the result of a real Quantum Computer (QC) computation;
● Test and benchmark QC performances;
● Understand when we really need a QC;
● For industry: develop solutions based on quantum algorithms for the 

moment QPU take off and become scalable.
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The Qubit
Classical bit b ∈ {0,1}

For 4 qubits you need a 24=16 coefficients.
For 50 qubits you would need 250=1015
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Running quantum algorithms
Quantum algorithm
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Running quantum algorithms
Quantum algorithm

Exact simulator

+ Real hardware 
- Noisy
- Limited number of qubits

Quantum hardware

- Limited entanglement

Tensor Network simulator

+ Access to exact state
- Limited number of qubits

+ High number of qubits
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Matrix Product States

Bonds encode 
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Quantum Matcha TEA workflow
Quantum circuit

Python interface, definition
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Serial CPU
Multinode MPI CPU

Serial GPU
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for running

the simulations

Not public
yet

Matrix product state
simulator

Observables

Python interface output

Observables
Runtime statistics

Convergence checks
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Applications
Entanglement entropy production in QNN 
Ballarin, Marco, et al. arXiv:2206.02474  
• Simulations up to 50 qubits 
• Bond dimension of 4096 
• 11h of runtime on Galileo100

Ab initio two-dimensional digital twin for  
quantum computer 
Jaschke, Daniel, et al. arXiv:2210.03763 
• Use of the unbiased sampling 
• Quantum matcha tea simulations used as target 

state to compute the fidelity of a simulation with 
crosstalk

15



QuantumTEA Cloud Platform
● Prototype that provides the QuantumTEA’s capabilities as Cloud Service
- QuantumTEA-as-a-Service
- based on Kubernetes running at CloudVeneto

● It is meant to be easily accessible 
● It allows users to run quantum circuits with QuantumTEA without specific cloud 

computing skills

16



Quantum computing standards and Qiskit
● No quantum computing standards exists
- several technologies, APIs, provider specific

● Qiskit open source Python SDK developed by IBM
- Qiskit provides tools for creating and manipulating quantum programs
- and running them on

● real quantum computers 
● simulators on a local computer or on a remote cloud service

17



Qiskit high level architecture

IBM Provider

AWSBraket Provider

QuantumTEA Provider

Users can take their existing algorithms written in Qiskit and, with a few lines of code, run them directly on different cloud 
platform including our QuantumTEA

client side service side (cloud)
LOCALHOST

18



QuantumTEA Qiskit provider implementation
● QuantumTEA-qiskit-provider implements a set of Qiskit interfaces (qiskit.providers Python APIs)
- Provider subclass that handles access to the backend(s)

● handles backend objects that enable executing circuits on a device or simulator (initialization, authentication, etc)
- Backend subclass and its run() method

● provide the interface between Qiskit and the hardware or simulator that will execute circuits
● run() method handles submitting the circuits to the backend to be executed and returning a Job objec (involves serialization 

(JSON), low level communication layer (REST))
- Job subclass that handles interacting with a running job

● the output from the run() method

19



QuantumTEA Qiskit provider implementation

To access the QT service you need an 
ACCESS TOKEN (IAM or Keystone)

from qiskit import QuantumCircuit

from qt_provider import QuantumTeaProvider

# Create a Quantum Circuit acting on the q register

circuit = QuantumCircuit(2, 2)

# Add a H gate on qubit 0 and a CX (CNOT) gate on control qubit 0 and target qubit 1

circuit.h(0)

circuit.cx(0, 1)

# Map the quantum measurement to the classical bits

circuit.measure([0, 1], [0, 1])

# Create a new QuantumTeaProvider instance

qt_provider = QuantumTeaProvider(TOKEN)

# Get the “KubernetesBackend” backend

qt_backend = qt_provider.get_backend(name="QuantumMatchaTEA")

# Execute the circuit on the QuantumTea Cloud Platform

job = qt_backend.run(qc)

# Grab results from the job

result = job.result()

20



Access Token from IAM

21



QuantumTEA Cloud Platform high level architecture
IAM Harbor

service side (cloud)

QuantumTEA service

QuantumTEA service
● validate the the user request (multiple circuits support)
● estimate the resources (RAM) needed by the docker container
● instantiate containers from our QuantumTEA docker image on K8s nodes (i.e. CloudVeneto Vms)
● monitor the execution and collect the results

Keystone

Hypervisor host 1:
● 2 x Intel(R) Xeon(R) Gold 5320 CPU @ 2.20GHz (26 cores/52 threads each)
● 512 GB RAM 
● 1 GPU NVIDIA A30

Hypervisor host 2:
● 2 x Intel(R) Xeon(R) Gold 6230R (26 cores/52 threads each)
● 512 GB RAM
● 1 GPU NVIDIA RTX A4000 

QuantumTEA Provider

Async 
operations

user side

22



QuantumTEA Cloud Platform architecture

QuantumTEA Provider

IAM Harbor

authN authZ admission

Keystone

QuantumTEA operator

kubernetes

Async 
operations

user side service side (cloud)
QuantumTEA operator
● Implemented in GO
● QuantumTEAJob Custom Resource Definition (CRD)
● AuthN webhook: added support to IAM

Redis datastore
● QuantumCircuit queue (one per job)
● Allow the execution of M circuits by N containers in parallel (M>=N)
● Collect the results

23



Outlook and next steps
● QuantumTEA emulator:

● New tensor network ansatzes for the simulation;
● Introduce and emulate noisy processes.

● QuantumTEA Cloud Platform:
● Service not yet available to be tested by external users;
● To move from prototype to production ready:

● Improvement the user request validation;
● simplify getting the token from IAM and test the integration;
● user guide and units test;
● stress tests with real use cases (complex circuits).
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Conclusions
QuantumTEA developers

Documentation and source code on baltig.infn.it

 Contact us:
●quantumtea@lists.infn.it 
●quantumcomputer@dfa.unipd.it
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Questions
QuantumTEA developers

Documentation and source code on baltig.infn.it

 Contact us:
●quantumtea@lists.infn.it 
●quantumcomputer@dfa.unipd.it
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