
M. Ballarin (Unipd), L. Zangrando (INFN)
The QuantumTEA Cloud Platform

Workshop sul calcolo nell’INFN

Loano 24/05/2023

1

QuantumTEA definition
Quantum Tensor-Network Emulator Applications

● Tensor network emulators for quantum systems;

● Quantum computer emulator powered by tensor networks;

● Emulates complex quantum systems “via quantum circuits” with a large number of qubits O(100);
● Run general-purpose quantum circuits (algorithms).

2

Quantum Computing and Simulation Center

● QuantumTEA is developed in the context of QCSC project;

● World Class Research Infrastructures (WCRI) project of University of Padua;

● Objectives of QCSC:
– Establish one of the first general-purpose quantum computer in Italy at the Department of Physics and Astronomy of

the University of Padua;
– Create a competence center to guide and support the development and the inclusion of quantum technologies in

the Italian academic and business environment.

3

QCSC partners

4

Why develop a quantum emulator? (1/2)
● Quantum computers are not production-ready yet;
● Today's quantum computers are:

● very noisy systems with a limited number of qubits;
● difficult to control and to isolate from the surrounding

environment;
● Large number of computation errors, impossible

to correct with quantum error correction algorithms.
A view inside the IBM Quantum System One

Why develop a quantum emulator? (2/2)
● With emulators we can:

● Validate the result of a real Quantum Computer (QC) computation;
● Test and benchmark QC performances;
● Understand when we really need a QC;
● For industry: develop solutions based on quantum algorithms for the

moment QPU take off and become scalable.

5

The Qubit
Classical bit b ∈ {0,1}

6

The Qubit
Classical bit b ∈ {0,1}

6

The Qubit
Classical bit b ∈ {0,1}

6

The Qubit
Classical bit b ∈ {0,1}

6

The Qubit
Classical bit b ∈ {0,1}

6

The Qubit
Classical bit b ∈ {0,1}

6

The Qubit
Classical bit b ∈ {0,1}

For 4 qubits you need a 24=16 coefficients.
For 50 qubits you would need 250=1015

6

Running quantum algorithms
Quantum algorithm

7

Running quantum algorithms
Quantum algorithm

+ Real hardware
- Noisy
- Limited number of qubits

Quantum hardware

7

Running quantum algorithms
Quantum algorithm

Exact simulator

+ Real hardware
- Noisy
- Limited number of qubits

Quantum hardware

+ Access to exact state
- Limited number of qubits

7

Running quantum algorithms
Quantum algorithm

Exact simulator

+ Real hardware
- Noisy
- Limited number of qubits

Quantum hardware

- Limited entanglement

Tensor Network simulator

+ Access to exact state
- Limited number of qubits

+ High number of qubits
7

Quantum algorithms

8

Quantum algorithms

Traffic

Earth
Observation

Portfolio
optimization

Combinatorial
optimization
problems

(QAOA, quantum
annealing, …)

8

Quantum algorithms

Molecules and
Materials

(VQE, quantum deflation, …)Traffic

Earth
Observation

Portfolio
optimization

Combinatorial
optimization
problems

(QAOA, quantum
annealing, …)

8

Quantum algorithms

Molecules and
Materials

(VQE, quantum deflation, …)Traffic

Earth
Observation

Portfolio
optimization

Combinatorial
optimization
problems

(QAOA, quantum
annealing, …)

Machine Learning

8

Quantum algorithms

Molecules and
Materials

(VQE, quantum deflation, …)Traffic

Earth
Observation

Portfolio
optimization

Combinatorial
optimization
problems

(QAOA, quantum
annealing, …)

Machine Learning

Shor algorithm

8

Molecules and
Materials

(VQE, quantum deflation, …)Traffic

Earth
Observation

Portfolio
optimization

Combinatorial
optimization
problems

(QAOA, quantum
annealing, …)

Machine Learning

Shor algorithmGrover algorithm

Quantum algorithms

8

Entanglement and compression
We can represent a

subset efficiently ?Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?

0000Classical
bit string

Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?

00110000Classical
bit string

Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?

0011 RANDOM0000Classical
bit string

Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?

0011 RANDOM0000Classical
bit string

Possible compression
quantified by Shannon entropy

Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?

0011 RANDOM0000Classical
bit string

Quantum
state

Optimal
Compression

Possible compression
quantified by Shannon entropy

Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?

0011 RANDOM0000Classical
bit string

Quantum
state

Optimal
Compression

Here we can compress something.
The quantum state is entangled, it
cannot be written as classical state

Possible compression
quantified by Shannon entropy

Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?

0011 RANDOM

|RANDOM ⟩

0000Classical
bit string

Quantum
state

Optimal
Compression

Here we can compress something.
The quantum state is entangled, it
cannot be written as classical state

No compression
possible without
approximations

Possible compression
quantified by Shannon entropy

Memory requirement ∝ 2n

9

Entanglement and compression
We can represent a

subset efficiently?

0011 RANDOM

|RANDOM ⟩

0000Classical
bit string

Quantum
state

Optimal
Compression

Here we can compress something.
The quantum state is entangled, it
cannot be written as classical state

No compression
possible without
approximations

Possible compression
quantified by Shannon entropy

Possible compression
quantified by Von Neumann entanglement entropy

Memory requirement ∝ 2n

9

Image compression through SVD

image
212 × 247

pixels
52364

10

U S V T

Image compression through SVD

image
212 × 247

pixels
52364

a00 a01 … a0m
a10 a11 … a1m
⋮ …⋱ ⋮
an0 an1 … anm

Rows Cols

10

U S V T

v31 v32 v33s33

u13
u23

u33

v23v22v21

u12
u22

u32

Image compression through SVD

image
212 × 247

pixels
52364

a00 a01 … a0m
a10 a11 … a1m
⋮ …⋱ ⋮
an0 an1 … anm

Rows Cols U S VT

s11

s22

0 0

00
0 0

v12 v13v11u11
u21

u31 10

U S V T

v31 v32 v33s33

u13
u23

u33

v23v22v21

u12
u22

u32

Image compression through SVD

Singular value
decomposition

image

212 × 247

pixels
52364

a00 a01 … a0m
a10 a11 … a1m
⋮ …⋱ ⋮
an0 an1 … anm

Rows Cols U S VT

s11

s22

0 0

00
0 0

v12 v13v11u11
u21

u31 10

v31 v32 v33s33

u13
u23

u33

v23v22v21

u12
u22

u32

Image compression through SVD

Singular value
decomposition

No truncation

image
212 × 247

pixels
52364

a00 a01 … a0m
a10 a11 … a1m
⋮ …⋱ ⋮
an0 an1 … anm

Rows Cols U S VT

U S V T

s11

s22

0 0

00
0 0

v12 v13v11u11
u21

u31 10

v31 v32 v33s33

u13
u23

u33

v23v22v21

u12
u22

u32

Image compression through SVD
Truncate the “least important” singular values

using the truncated norm

Singular value
decomposition

No truncation

image
212 × 247

pixels
52364

a00 a01 … a0m
a10 a11 … a1m
⋮ …⋱ ⋮
an0 an1 … anm

Rows Cols U S VT

U S V T

s11

s22

0 0

00
0 0

v12 v13v11u11
u21

u31 10

v23v22v21

u12
u22

u32

Image compression through SVD
Truncate the “least important” singular values

using the truncated norm

Singular value
decomposition

No truncation

image
212 × 247

pixels
52364

a00 a01 … a0m
a10 a11 … a1m
⋮ …⋱ ⋮
an0 an1 … anm

Rows Cols U S VT

80%
truncation

 pixels
19320

U S V T

u13
u23

u33

s11

s22

s33

0 0

00
0 0

v12 v13v11

v31 v32 v33

u11
u21

u31 10

Image compression through SVD
Truncate the “least important” singular values

using the truncated norm

Singular value
decomposition

No truncation

image
212 × 247

pixels
52364

a00 a01 … a0m
a10 a11 … a1m
⋮ …⋱ ⋮
an0 an1 … anm

Rows Cols U S VT

u11

80%
truncation

 pixels
19320

95%
truncation

 pixels
4600

U S V T

u12 u13
u21 u22 u23

u31 u32 u33

s11

s22

s33

0 0

00
0 0

v12 v13v11
v21 v22 v23

v31 v32 v33 10

Compressing a 4-qubits quantum state
1
2

(|0000⟩ +|1111⟩) =

1
0
⋮
0
116

|ψ ⟩ = 1
2

11

Compressing a 4-qubits quantum state
1
2

(|0000⟩ +|1111⟩) =

1
0
⋮
0
116

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4 4|ψ ⟩ = 1
2

1
2

11

Compressing a 4-qubits quantum state
1
2

(|0000⟩ +|1111⟩) =

1
0
⋮
0
1

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

16

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4 4|ψ ⟩ = 1
2

1
2

11

Compressing a 4-qubits quantum state
1
2

(|0000⟩ +|1111⟩) =

1
0
⋮
0
1

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

16

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4 4

4 → 2

|ψ ⟩ = 1
2

1
2

11

Compressing a 4-qubits quantum state
1
2

(|0000⟩ +|1111⟩) =

1
0
⋮
0
1

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

Matrix
multiplication

16

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4 4

4 → 2

|ψ ⟩ = 1
2

1
2

11

Compressing a 4-qubits quantum state
1
2

(|0000⟩ +|1111⟩) =

1
0
⋮
0
1

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

Matrix
multiplication

16

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4 4

44

 2

4 → 2

|ψ ⟩ = 1
2

1
2

11

Compressing a 4-qubits quantum state
1
2

(|0000⟩ +|1111⟩) =

1
0
⋮
0
1

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

Matrix
multiplication

16

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4 4

44

 2

4 → 2

Bond dimension encode
entanglement

between qubits

|ψ ⟩ = 1
2

1
2

11

Matrix Product States

χ

Memory requirements
O(2n)→O(2n χ2)

12

Matrix Product States

χ

Each tensor (ball) encodes
the state of a qubit

Memory requirements
O(2n)→O(2n χ2)

12

Matrix Product States

Bonds encode
entanglement

between qubits
χ

Each tensor (ball) encodes
the state of a qubit

Memory requirements
O(2n)→O(2n χ2)

12

Matrix Product States

Bonds encode
entanglement

between qubits
χ

Each tensor (ball) encodes
the state of a qubit

Memory requirements
O(2n)→O(2n χ2)

12

Matrix Product States

Bonds encode
entanglement

between qubits
χ

Each tensor (ball) encodes
the state of a qubit

Memory requirements
Quantum gate

O(2n)→O(2n χ2)

12

Matrix Product States

Bonds encode
entanglement

between qubits
χ

Each tensor (ball) encodes
the state of a qubit

MPS SIMULATIONS ARE
NOT LIMITED BY THE

NUMBER OF QUBITS BUT
BY THE ENTANGLEMENT

Memory requirements
Quantum gate

O(2n)→O(2n χ2)

12

QuantumTEA distribution
T E ATensor network Applications

EmulatorQuantum tea leaves: Utility

Quantum red tea: tensor handling

Quantum chai tea: AI and ML with tensor networks

Quantum green tea: Schr dinger equation solution for many-body statesö

Quantum matcha tea: quantum circuit HPC simulations

13

QuantumTEA distribution
T E ATensor network Applications

Emulator Public!Quantum tea leaves: Utility

Quantum red tea: tensor handling

Quantum chai tea: AI and ML with tensor networks

Quantum green tea: Schr dinger equation solution for many-body statesö

Quantum matcha tea: quantum circuit HPC simulations

13

Quantum Matcha TEA workflow
Quantum circuit

Python interface, definition
of the problem

Observables

14

Quantum Matcha TEA workflow
Quantum circuit

Python interface, definition
of the problem

Matrix product state
simulator

Observables

14

Quantum Matcha TEA workflow
Quantum circuit

Python interface, definition
of the problem

Serial CPU
Multinode MPI CPU

Serial GPU

Backends
for running

the simulations

Matrix product state
simulator

Observables

14

Quantum Matcha TEA workflow
Quantum circuit

Python interface, definition
of the problem

Serial CPU
Multinode MPI CPU

Serial GPU

Backends
for running

the simulations

Not public
yet

Matrix product state
simulator

Observables

14

Quantum Matcha TEA workflow
Quantum circuit

Python interface, definition
of the problem

Serial CPU
Multinode MPI CPU

Serial GPU

Backends
for running

the simulations

Not public
yet

Matrix product state
simulator

Observables

Python interface output

Observables
Runtime statistics

Convergence checks

14

Applications
Entanglement entropy production in QNN
Ballarin, Marco, et al. arXiv:2206.02474
• Simulations up to 50 qubits
• Bond dimension of 4096
• 11h of runtime on Galileo100

Ab initio two-dimensional digital twin for
quantum computer
Jaschke, Daniel, et al. arXiv:2210.03763
• Use of the unbiased sampling
• Quantum matcha tea simulations used as target

state to compute the fidelity of a simulation with
crosstalk

15

QuantumTEA Cloud Platform
● Prototype that provides the QuantumTEA’s capabilities as Cloud Service
- QuantumTEA-as-a-Service
- based on Kubernetes running at CloudVeneto

● It is meant to be easily accessible
● It allows users to run quantum circuits with QuantumTEA without specific cloud

computing skills

16

Quantum computing standards and Qiskit
● No quantum computing standards exists
- several technologies, APIs, provider specific

● Qiskit open source Python SDK developed by IBM
- Qiskit provides tools for creating and manipulating quantum programs
- and running them on

● real quantum computers
● simulators on a local computer or on a remote cloud service

17

Qiskit high level architecture

IBM Provider

AWSBraket Provider

QuantumTEA Provider

Users can take their existing algorithms written in Qiskit and, with a few lines of code, run them directly on different cloud
platform including our QuantumTEA

client side service side (cloud)
LOCALHOST

18

QuantumTEA Qiskit provider implementation
● QuantumTEA-qiskit-provider implements a set of Qiskit interfaces (qiskit.providers Python APIs)
- Provider subclass that handles access to the backend(s)

● handles backend objects that enable executing circuits on a device or simulator (initialization, authentication, etc)
- Backend subclass and its run() method

● provide the interface between Qiskit and the hardware or simulator that will execute circuits
● run() method handles submitting the circuits to the backend to be executed and returning a Job objec (involves serialization

(JSON), low level communication layer (REST))
- Job subclass that handles interacting with a running job

● the output from the run() method

19

QuantumTEA Qiskit provider implementation

To access the QT service you need an
ACCESS TOKEN (IAM or Keystone)

from qiskit import QuantumCircuit

from qt_provider import QuantumTeaProvider

Create a Quantum Circuit acting on the q register

circuit = QuantumCircuit(2, 2)

Add a H gate on qubit 0 and a CX (CNOT) gate on control qubit 0 and target qubit 1

circuit.h(0)

circuit.cx(0, 1)

Map the quantum measurement to the classical bits

circuit.measure([0, 1], [0, 1])

Create a new QuantumTeaProvider instance

qt_provider = QuantumTeaProvider(TOKEN)

Get the “KubernetesBackend” backend

qt_backend = qt_provider.get_backend(name="QuantumMatchaTEA")

Execute the circuit on the QuantumTea Cloud Platform

job = qt_backend.run(qc)

Grab results from the job

result = job.result()

20

Access Token from IAM

21

QuantumTEA Cloud Platform high level architecture
IAM Harbor

service side (cloud)

QuantumTEA service

QuantumTEA service
● validate the the user request (multiple circuits support)
● estimate the resources (RAM) needed by the docker container
● instantiate containers from our QuantumTEA docker image on K8s nodes (i.e. CloudVeneto Vms)
● monitor the execution and collect the results

Keystone

Hypervisor host 1:
● 2 x Intel(R) Xeon(R) Gold 5320 CPU @ 2.20GHz (26 cores/52 threads each)
● 512 GB RAM
● 1 GPU NVIDIA A30

Hypervisor host 2:
● 2 x Intel(R) Xeon(R) Gold 6230R (26 cores/52 threads each)
● 512 GB RAM
● 1 GPU NVIDIA RTX A4000

QuantumTEA Provider

Async
operations

user side

22

QuantumTEA Cloud Platform architecture

QuantumTEA Provider

IAM Harbor

authN authZ admission

Keystone

QuantumTEA operator

kubernetes

Async
operations

user side service side (cloud)
QuantumTEA operator
● Implemented in GO
● QuantumTEAJob Custom Resource Definition (CRD)
● AuthN webhook: added support to IAM

Redis datastore
● QuantumCircuit queue (one per job)
● Allow the execution of M circuits by N containers in parallel (M>=N)
● Collect the results

23

Outlook and next steps
● QuantumTEA emulator:

● New tensor network ansatzes for the simulation;
● Introduce and emulate noisy processes.

● QuantumTEA Cloud Platform:
● Service not yet available to be tested by external users;
● To move from prototype to production ready:

● Improvement the user request validation;
● simplify getting the token from IAM and test the integration;
● user guide and units test;
● stress tests with real use cases (complex circuits).

24

Our websites 1/2

25

Our websites 2/2

26

Conclusions
QuantumTEA developers

Documentation and source code on baltig.infn.it

 Contact us:
●quantumtea@lists.infn.it
●quantumcomputer@dfa.unipd.it

27

Thank you!
QuantumTEA developers

Documentation and source code on baltig.infn.it

 Contact us:
●quantumtea@lists.infn.it
●quantumcomputer@dfa.unipd.it

28

Thank you !Thank you !

Questions
QuantumTEA developers

Documentation and source code on baltig.infn.it

 Contact us:
●quantumtea@lists.infn.it
●quantumcomputer@dfa.unipd.it

29

	Slide 1
	QuantumTEA definition
	Quantum Computing and Simulation Center
	QCSC partners
	Why develop a quantum emulator? (1/2)
	Why develop a quantum emulator? (2/2)
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Quantum Algorithms
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	QuantumTEA Cloud Platform
	Quantum computing standards and Qiskit
	Qiskit high level architecture
	QuantumTEA Qiskit provider implementation
	QuantumTEA Qiskit provider implementation (2)
	Access Token from IAM
	QuantumTEA Cloud Platform high level architecture
	QuantumTEA Cloud Platform high level architecture (2)
	Outlook and next steps
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

