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APEIRON: an overview
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APEIRON main goal is to develop a framework offering hardware and software 
support for the execution of real-time dataflow applications on a system composed 
by interconnected FPGAs

§ Enabling the mapping the dataflow graph of the application on the distributed 
FPGA system and offering runtime support for the execution.

§ Allowing users, with no (or little) experience in hardware design tools, to 
develop their applications on such distributed FPGA-based platforms.
– Tasks are implemented in C++ using High Level Synthesis tools (Xilinx® Vitis).
– Lightweight C++ communication API (HAPECOM)
• Non-blocking send()
• Blocking receive()

§ APEIRON is based on Xilinx® Vitis High Level Synthesis framework and 
on INFN Communication IP
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APEIRON in Trigger and Data Acquistion Systems
Abstract Processing Environment for Intelligent Read-Out systems based on Neural networks

• Input data from several different channels (data sources, 
detectors/sub-detectors).

• Data streams from different channels recombined 
through the processing layers using a low-latency, 
modular and scalable network infrastructure

• Distributed online processing on heterogeneous 
computing devices (FPGAs for the moment) in n 
subsequent layers.

• Typically features extraction will occur in the first NN 
layers on RO FPGAs.

• More resource-demanding NN layers can 
be implemented in subsequent processing layers.

• Classification produced by the NN in last processing layer 
(e.g. pid) will be input for the trigger processor/storage 
online data reduction stage for triggerless systems.
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INFN Communication IP
INFN is developing the IPs implementing a direct network 
that allows low-latency data transfer between processing 
tasks deployed on the same FPGA (intra-node 
communication) 
and on different FPGAs (inter-node communication) 

• Host Interface IP: Interface the FPGA logic with the 
host through the system bus.
§ Xilinx® XDMA PCIe Gen3

• Routing IP: Routing of intra-node and inter-node 
messages between processing tasks on FPGA.

• Network IP: Network channels and 
Application-dependent I/O
§ APElink 20 Gbps à 40 Gbps
§ UDP/IP over 1/10 GbE à 25/40/100 GbE

• HLS Kernels: user defined processing tasks
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APEIRON Runtime Software Stack
• The APEIRON runtime software stack is built on top of the 

Xilinx® XRT one adding three layers to:
Ø add the functionalities required to manage multiple FPGA 

execution platforms (e.g., program the devices, configure the 
IPs, start/stop execution, monitor the status of IPs, ...);

Ø reduce the impact of changes in XRT API introduced with any 
new version of Vitis on the APEIRON host-side applications;

Ø decouple the APEIRON software stack from the specific platform, 
easing the future porting of the framework to different 
platforms/vendors, ideally by extending the APEIRON library 
layer only.

• Apeirond is a persistent daemon used to manage multiple 
access request from user apps to the board. It uses the 
APEIRON lib exposed functions to operate on the devices.

• Using the network socket exposed by each apeirond module, 
the supervisor can write commands and read answer / status 
of the different instances of the APEIRON framework running 
in each node, allowing the end user to have a complete 
overview of the multiple FPGA execution platform.
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APEIRON: Workflow for FPGA bitstream generation
§ The HLS task must have a generic interface, 

implementation is free.
§ A YAML configuration file is used to describe the 

kernels interconnection topology, specifying how 
many input/output channels they have

void example_task(
[list of optional kernel specific parameters],
message_stream_t message_data_in[N_INPUT_CHANNELS],
message_stream_t message_data_out[N_OUTPUT_CHANNELS]) 
{…}

• Adaptation toward/from IntraNode ports of the 
Routing IP is done by the automatically generated 
Aggregator and Dispatcher kernel templates.
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Communication Latency Test

Since the HLS kernel on the initiator FPGA is started via host 
code while the HLS kernel in "pipe" mode is free-running, the 
former is launched with a repetition parameter of 1 million 
send/receive operations before termination in order to 
minimize the contribution of the host call overhead on the 
overall time elapsed from the start of the first packet send to 
the completion of the last packet receive (measured on the 
host).

Latency test is performed using multi-task HLS kernel 
(krnl_sr), configurable by the host in different modes:
• "send_receive" mode: kernel reads a payload data 

item from the FPGA memory (either BRAM or DDR) 
and sends and receives it through/from the 
Communication IP to/from a second interconnected 
FPGA

• "pipe" mode has the task of receiving a single packet 
and bouncing it back to the initiator FPGA
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Communication Bandwidth Test

Bandwidth test is carried out by transferring multiple 
data packets with fixed payload size from:
• a “sender” HLS kernel which reads data from the 

source buffer in FPGA memory (either DDR or BRAM) 
and pushes them through the Communication IP to 
another FPGA

• a “receiver” HLS kernel:  writes data into the 
destination buffer in memory. 

After receiving the number of data packets whose 
integrated payload adds up to the size of the receive 
buffer, the second FPGA pings back a single “ACK” packet 
with minimal payload to confirm the reception.
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APEIRON Latency and Bandwidth
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PID in NA62 RICH using NN on FPGA at L0 Trigger

TEL62
4x TEL62

8x 1GbE links

FPGA

Primitives from 
other detectors

L0TP+

§ Goal: for any event detected by the RICH provide an estimate for 
the number charged particles and the number of electrons

§ Streaming readout processing on FPGA using Neural Networks 
for classification (10 MHz).

§ Produce a new primitives stream for Level 0 Trigger Processor
§ The main challenge is the processing throughput

2048 Readout channels
èINPUT

Can we produce rings information 
online for the L0TP+ 

level 0 trigger?
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Why FPGA are good for real-time inference?
• Customizable I/O and deterministic latency make 

them well suited for TDAQ systems.
• Improvements to silicon manufacturing process 

made them very interesting for heavy 
computation as well.

• In our case, the challenge is the processing 
throughput è a pipelined design can potentially 
produce a new output at each clock cycle.

• Initiation interval (II): Number of clock cycles 
before the function can accept new input data. 
The lower the II, the higher the throughput

• The greater the number of pipeline stages, the 
greater the latency.

• High level synthesis tools allows to describe 
datapaths in FPGA using high level software 
languages (C/C++, OpenCL, SYCL,...).
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How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly 
FPGA resource usage) must be taken into account and verified at any stage:
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How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly 
FPGA resource usage) must be taken into account and verified at any stage:

• Generation strategy of training and validation data sets.
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How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly 
FPGA resource usage) must be taken into account and verified at any stage:

• TensorFlow/Keras
     è NN architecture (number and kind of layers) and representation of the input
     èTraining strategy (class balancing, batch sizes, optimizer choice, learning rate,...).
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How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly 
FPGA resource usage) must be taken into account and verified at any stage:

• Qkeras è Search iteratively the minimal representation size in bits of weights, biases 
and activations.
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How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly 
FPGA resource usage) must be taken into account and verified at any stage:

• hls4ml è Tuning of REUSE FACTOR config param (low values -> low latency, high 
throughput, high resource usage), clock frequency.
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How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly 
FPGA resource usage) must be taken into account and verified at any stage:

• Vivado HLS è co-simulation for verification of performance (experimented very good 
agreement with QKeras Model)
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NN Architectures: Dense Model
§ Input representation: normalized hitlist (max 64 hits per event)
§ Output: 4 classes (0, 1, 2, 3+ rings)
§ Quantization (fixed point)
– Weights and biases: 8 bits <8, 1>
– Activations: 16 bits <16, 6>

§ FPGA resource usage (VCU118) 
LUT 14%, DSP 2%, BRAM 0%

§ Latency: 22 cycles @ 150MHz
§ Initiation Interval (II): 8 cycles
§ Throughput: 18.75 MHz

Class  0 (0 rings) Efficiency 85.7  Purity 95.6
Class  1 (1 rings) Efficiency 87.7  Purity 82.9
Class 2 (2 rings) Efficiency 72.3 Purity 67.4
Class 3 (3+ rings) Efficiency 71.9 Purity 84.3
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NN Architectures: Convolutional Model
§ Input representation: 16x16 images

§ Output: 4 classes (0, 1, 2, 3+ rings)
§ Quantization (fixed point):
– Weights and biases: 8 bits <8, 1>
– Activations:16 bits <16, 6>

§ FPGA resource usage (Alveo U200)
- LUT 5.2%, FF 1.5%, DSP 4.8%, 
- BRAM 0.05%

§ Latency: 388 cycles @ 220MHz
§ Initiation Interval (II): 369 cycles
§ Throughput: 0.6 MHz
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Convolutional model issue è Kernel replication
Throughput is not enough to sustain L0 rate, but we can replicate the network multiple times, also on multiple 
devices if necessary (APEIRON).

Resources usage for 12 replicas:
• LUT 74%
• FF 17%
• DSP 61%
• BRAM 1.4%
Processing time @220MHz: 137 ns per event
Processing throughput: 7.2 MHz
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Results for classification of number of electrons

§ Preliminary results for online classification of the number of 
"electrons" show that even the very simple NN architectures that 
we tested are capable, below 35 GeV/c momentum, of reaching a 
non-negligible performance (see terminal picture below).

§ It can be improved for the online unfiltered event stream using a 
dedicated NN receiving in input data from other detectors (e.g. 
L0CALO).
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Conclusions and Future Work

§ The APEIRON framework enables the development and deployment of Vitis HLS dataflow applications distributed on 
multiple-FPGA systems.

§ The co-design of its software stack and of the Communication IP allowed to reach very low and deterministic latency 
and a high fraction of the channel's raw bandwidth for communications between FPGAs, addressing fundamental 
bottlenecks for real-time distributed dataflow applications.

§ We are working to improve the framework and the Communication IP
– to increase the internal datapath of the IP to 256 bits and to use the transceiver with 4 lanes to support 

applications requiring an increased communication bandwidth
– To implement a new channel interface based on the Xilinx® 10G/25G High Speed Ethernet Subsystem in order to 

enable interoperability with standard switched networks, either to support (e.g. UDP over IP) input and output 
streams or to implement a switched network topology.

§ We control the workflow for the implementation of real-time/high throughput classifiers on FPGA using limited 
resources, this hints for applying the methodology also to:
– less capable (i.e. front-end) FPGAs
– complex design making use of a large fraction of FPGA resources (e.g. L0TP+)
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BACKUP SLIDES
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Datasets’ generation
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Communication IP: APENET header 


