
APEIRON: a Framework for High Level
Programming of Dataflow Applications

on Multi-FPGA Systems
Cristian Rossi

(INFN Roma, APE Lab)

for the APEIRON team

Workshop sul Calcolo nell'I.N.F.N.
Loano (Savona) 22 - 26 maggio 2023

This work is supported by the TEXTAROSSA project (G.A. n. 956831) as part of the EuroHPC-JU
initiative, and by INFN National Scientific Committee 5.

APEIRON: an overview

24/05/23 CCR 2023 2

APEIRON main goal is to develop a framework offering hardware and software
support for the execution of real-time dataflow applications on a system composed
by interconnected FPGAs

§ Enabling the mapping the dataflow graph of the application on the distributed
FPGA system and offering runtime support for the execution.

§ Allowing users, with no (or little) experience in hardware design tools, to
develop their applications on such distributed FPGA-based platforms.
– Tasks are implemented in C++ using High Level Synthesis tools (Xilinx® Vitis).
– Lightweight C++ communication API (HAPECOM)
• Non-blocking send()
• Blocking receive()

§ APEIRON is based on Xilinx® Vitis High Level Synthesis framework and
on INFN Communication IP

24/05/23 CCR 2023 3

APEIRON in Trigger and Data Acquistion Systems
Abstract Processing Environment for Intelligent Read-Out systems based on Neural networks

• Input data from several different channels (data sources,
detectors/sub-detectors).

• Data streams from different channels recombined
through the processing layers using a low-latency,
modular and scalable network infrastructure

• Distributed online processing on heterogeneous
computing devices (FPGAs for the moment) in n
subsequent layers.

• Typically features extraction will occur in the first NN
layers on RO FPGAs.

• More resource-demanding NN layers can
be implemented in subsequent processing layers.

• Classification produced by the NN in last processing layer
(e.g. pid) will be input for the trigger processor/storage
online data reduction stage for triggerless systems.

24/05/23 CCR 2023 4

INFN Communication IP
INFN is developing the IPs implementing a direct network
that allows low-latency data transfer between processing
tasks deployed on the same FPGA (intra-node
communication)
and on different FPGAs (inter-node communication)

• Host Interface IP: Interface the FPGA logic with the
host through the system bus.
§ Xilinx® XDMA PCIe Gen3

• Routing IP: Routing of intra-node and inter-node
messages between processing tasks on FPGA.

• Network IP: Network channels and
Application-dependent I/O
§ APElink 20 Gbps à 40 Gbps
§ UDP/IP over 1/10 GbE à 25/40/100 GbE

• HLS Kernels: user defined processing tasks

24/05/23 CCR 2023 5

APEIRON Runtime Software Stack
• The APEIRON runtime software stack is built on top of the

Xilinx® XRT one adding three layers to:
Ø add the functionalities required to manage multiple FPGA

execution platforms (e.g., program the devices, configure the
IPs, start/stop execution, monitor the status of IPs, ...);

Ø reduce the impact of changes in XRT API introduced with any
new version of Vitis on the APEIRON host-side applications;

Ø decouple the APEIRON software stack from the specific platform,
easing the future porting of the framework to different
platforms/vendors, ideally by extending the APEIRON library
layer only.

• Apeirond is a persistent daemon used to manage multiple
access request from user apps to the board. It uses the
APEIRON lib exposed functions to operate on the devices.

• Using the network socket exposed by each apeirond module,
the supervisor can write commands and read answer / status
of the different instances of the APEIRON framework running
in each node, allowing the end user to have a complete
overview of the multiple FPGA execution platform.

24/05/23 CCR 2023 6

APEIRON: Workflow for FPGA bitstream generation
§ The HLS task must have a generic interface,

implementation is free.
§ A YAML configuration file is used to describe the

kernels interconnection topology, specifying how
many input/output channels they have

void example_task(
[list of optional kernel specific parameters],
message_stream_t message_data_in[N_INPUT_CHANNELS],
message_stream_t message_data_out[N_OUTPUT_CHANNELS])
{…}

• Adaptation toward/from IntraNode ports of the
Routing IP is done by the automatically generated
Aggregator and Dispatcher kernel templates.

24/05/23 CCR 2023 7

Communication Latency Test

Since the HLS kernel on the initiator FPGA is started via host
code while the HLS kernel in "pipe" mode is free-running, the
former is launched with a repetition parameter of 1 million
send/receive operations before termination in order to
minimize the contribution of the host call overhead on the
overall time elapsed from the start of the first packet send to
the completion of the last packet receive (measured on the
host).

Latency test is performed using multi-task HLS kernel
(krnl_sr), configurable by the host in different modes:
• "send_receive" mode: kernel reads a payload data

item from the FPGA memory (either BRAM or DDR)
and sends and receives it through/from the
Communication IP to/from a second interconnected
FPGA

• "pipe" mode has the task of receiving a single packet
and bouncing it back to the initiator FPGA

24/05/23 CCR 2023 8

Communication Bandwidth Test

Bandwidth test is carried out by transferring multiple
data packets with fixed payload size from:
• a “sender” HLS kernel which reads data from the

source buffer in FPGA memory (either DDR or BRAM)
and pushes them through the Communication IP to
another FPGA

• a “receiver” HLS kernel: writes data into the
destination buffer in memory.

After receiving the number of data packets whose
integrated payload adds up to the size of the receive
buffer, the second FPGA pings back a single “ACK” packet
with minimal payload to confirm the reception.

24/05/23 CCR 2023 9

APEIRON Latency and Bandwidth

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

16 32 64 128 256 512 1k 2k 4k

B
an

dw
id

th
 (M

B
/s

)

Message size (Byte)

Bandwidth

oneway DDR
oneway BRAM
loopback BRAM
looopback DDR

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

16 32 64 128 256 512 1k 2k 4k

Ti
m

e
(u

s)

Message size (Byte)

Latency

Roundtrip, DDR + sync
Roundtrip, BRAM
Localloop, DDR + sync
Localloop, BRAM
Localtrip, DDR + sync
Localtrip, BRAM

24/05/23 CCR 2023 10

PID in NA62 RICH using NN on FPGA at L0 Trigger

TEL62
4x TEL62

8x 1GbE links

FPGA

Primitives from
other detectors

L0TP+

§ Goal: for any event detected by the RICH provide an estimate for
the number charged particles and the number of electrons

§ Streaming readout processing on FPGA using Neural Networks
for classification (10 MHz).

§ Produce a new primitives stream for Level 0 Trigger Processor
§ The main challenge is the processing throughput

2048 Readout channels
èINPUT

Can we produce rings information
online for the L0TP+

level 0 trigger?

24/05/23 CCR 2023 11

Why FPGA are good for real-time inference?
• Customizable I/O and deterministic latency make

them well suited for TDAQ systems.
• Improvements to silicon manufacturing process

made them very interesting for heavy
computation as well.

• In our case, the challenge is the processing
throughput è a pipelined design can potentially
produce a new output at each clock cycle.

• Initiation interval (II): Number of clock cycles
before the function can accept new input data.
The lower the II, the higher the throughput

• The greater the number of pipeline stages, the
greater the latency.

• High level synthesis tools allows to describe
datapaths in FPGA using high level software
languages (C/C++, OpenCL, SYCL,...).

24/05/23 CCR 2023 12

How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly
FPGA resource usage) must be taken into account and verified at any stage:

24/05/23 CCR 2023 13

How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly
FPGA resource usage) must be taken into account and verified at any stage:

• Generation strategy of training and validation data sets.

24/05/23 CCR 2023 14

How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly
FPGA resource usage) must be taken into account and verified at any stage:

• TensorFlow/Keras
 è NN architecture (number and kind of layers) and representation of the input
 èTraining strategy (class balancing, batch sizes, optimizer choice, learning rate,...).

24/05/23 CCR 2023 15

How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly
FPGA resource usage) must be taken into account and verified at any stage:

• Qkeras è Search iteratively the minimal representation size in bits of weights, biases
and activations.

24/05/23 CCR 2023 16

How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly
FPGA resource usage) must be taken into account and verified at any stage:

• hls4ml è Tuning of REUSE FACTOR config param (low values -> low latency, high
throughput, high resource usage), clock frequency.

24/05/23 CCR 2023 17

How? è Design and Implementation Workflow

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and hardware constraints (mainly
FPGA resource usage) must be taken into account and verified at any stage:

• Vivado HLS è co-simulation for verification of performance (experimented very good
agreement with QKeras Model)

24/05/23 CCR 2023 18

NN Architectures: Dense Model
§ Input representation: normalized hitlist (max 64 hits per event)
§ Output: 4 classes (0, 1, 2, 3+ rings)
§ Quantization (fixed point)
– Weights and biases: 8 bits <8, 1>
– Activations: 16 bits <16, 6>

§ FPGA resource usage (VCU118)
LUT 14%, DSP 2%, BRAM 0%

§ Latency: 22 cycles @ 150MHz
§ Initiation Interval (II): 8 cycles
§ Throughput: 18.75 MHz

Class 0 (0 rings) Efficiency 85.7 Purity 95.6
Class 1 (1 rings) Efficiency 87.7 Purity 82.9
Class 2 (2 rings) Efficiency 72.3 Purity 67.4
Class 3 (3+ rings) Efficiency 71.9 Purity 84.3

24/05/23 CCR 2023 19

NN Architectures: Convolutional Model
§ Input representation: 16x16 images

§ Output: 4 classes (0, 1, 2, 3+ rings)
§ Quantization (fixed point):
– Weights and biases: 8 bits <8, 1>
– Activations:16 bits <16, 6>

§ FPGA resource usage (Alveo U200)
- LUT 5.2%, FF 1.5%, DSP 4.8%,
- BRAM 0.05%

§ Latency: 388 cycles @ 220MHz
§ Initiation Interval (II): 369 cycles
§ Throughput: 0.6 MHz

24/05/23 CCR 2023 20

Convolutional model issue è Kernel replication
Throughput is not enough to sustain L0 rate, but we can replicate the network multiple times, also on multiple
devices if necessary (APEIRON).

Resources usage for 12 replicas:
• LUT 74%
• FF 17%
• DSP 61%
• BRAM 1.4%
Processing time @220MHz: 137 ns per event
Processing throughput: 7.2 MHz

24/05/23 CCR 2023 21

Results for classification of number of electrons

§ Preliminary results for online classification of the number of
"electrons" show that even the very simple NN architectures that
we tested are capable, below 35 GeV/c momentum, of reaching a
non-negligible performance (see terminal picture below).

§ It can be improved for the online unfiltered event stream using a
dedicated NN receiving in input data from other detectors (e.g.
L0CALO).

24/05/23 CCR 2023 22

Conclusions and Future Work

§ The APEIRON framework enables the development and deployment of Vitis HLS dataflow applications distributed on
multiple-FPGA systems.

§ The co-design of its software stack and of the Communication IP allowed to reach very low and deterministic latency
and a high fraction of the channel's raw bandwidth for communications between FPGAs, addressing fundamental
bottlenecks for real-time distributed dataflow applications.

§ We are working to improve the framework and the Communication IP
– to increase the internal datapath of the IP to 256 bits and to use the transceiver with 4 lanes to support

applications requiring an increased communication bandwidth
– To implement a new channel interface based on the Xilinx® 10G/25G High Speed Ethernet Subsystem in order to

enable interoperability with standard switched networks, either to support (e.g. UDP over IP) input and output
streams or to implement a switched network topology.

§ We control the workflow for the implementation of real-time/high throughput classifiers on FPGA using limited
resources, this hints for applying the methodology also to:
– less capable (i.e. front-end) FPGAs
– complex design making use of a large fraction of FPGA resources (e.g. L0TP+)

The APEIRON Team
@INFN Roma – APE Lab

A. Lonardo P. Vicini F. Lo Cicero F. Simula M. Martinelli P. S. Paolucci

R. Ammendola A. Biagioni P. Cretaro O. Frezza C. Rossi M. Turisini
(now @CINECA)

@IN
FN
CNA
F

A. Ciardiello

@Università
Sapienza Roma

THANK YOU!

24/05/23 CHEP 2023 24

BACKUP SLIDES

24/05/23 CHEP 2023 25

Datasets’ generation

24/05/23 CHEP 2023 26

Communication IP: APENET header

