
INDIGO-IAM: sviluppi futuri e
federazioni OIDC

Roberta Miccoli
INFN-CNAF

Workshop sul Calcolo nell'I.N.F.N.
Loano (Savona) 22 - 26 maggio 2023

First developed in the context of the H2020 INDIGO
DataCloud project
 ~7 years since 1st INDIGO IAM release v0.3.0 (2016-07-12)

Allows consistent authentication and authorization
technologies/policies at all Cloud levels
(IaaS, PaaS, SaaS) in the context
of INFN Datacloud

Selected by the WLCG management board to be
the core of the future, token-based WLCG AAI

INDIGO Identity and Access Management Service

2

INDIGO Identity and Access Management Service

An authentication and authorization service that:

● supports multiple authentication
mechanisms

● provides users with a persistent,
organization scoped identifier

● exposes identity information, attributes
and capabilities to services via JWT tokens
and standard OAuth & OpenID Connect
protocols

● can integrate existing VOMS-aware services
● supports Web and non-Web access,

delegation and token renewal
3

Latest release: IAM v1.8.1

Released on: 2023-02-28

Major highlights:

● Scopes management interface added to IAM dashboard
● Group Manager interface added to IAM dashboard
● Support for AARC-G069 guideline (groups and roles membership information can be requested

with the entitlements scope and appears in the entitlements claim of the access token) to
increase conformance to AARC Blueprint Architecture

4

https://github.com/indigo-iam/iam/releases/tag/v1.8.1
https://aarc-project.eu/guidelines/aarc-g069/

Scopes management interface

This page replaces
the functionality of
the old System
Scopes page of the
MitreID dashboard
and it is only visible
by IAM Admins

5

Scopes management interface

6

Scopes management interface

7

Group Manager interface

Once the Group Manager clicks on a group, what they can see
in the upper tabs is:

● detailed view of group information (Group information)
● list of children groups, if any (Subgroups)
● list of group managers (Managers)
● list of group members, if any (Members)

8

Group Manager interface
A Group Manager in IAM does not have the same privileges as the IAM Admin in managing groups. Currently, they can:

● approve/reject membership requests
● delete users from their managed groups

The Group Manager has also the possibility to click on group members, where a limited view of user information (including name,
surname, uuid, username, email, status, created, updated, end time and labels) is shown.

9

10

IAM deployment,
performance and HA

IAM deployments at CNAF

11

~ 20 IAM
instances

IAM deployments outside CNAF

12

~ 10 IAM instances

atlas-auth.web.cern.ch cms-auth.web.cern.ch lhcb-auth.web.cern.ch alice-auth.web.cern.ch iris-iam.stfc.ac.uk

IAM performance: a goal to be achieved
● Unannounced stress tests have been performed on the Atlas IAM instance hosted at

CERN
○ vegeta attack with 100 Hz token request rate using client credentials grant

● ~100 Hz sustained for more than two days (300 ms response time, 0% error rate)
● then, IAM showed some

degradation and it became
unavailable afterwards

○ the k8s liveness probe took
IAM down because it was not
responding to the /health
endpoint within the timeout

● Scalability and performance
tests are planned for the next
IAM Hackathon

13

https://indico.stfc.ac.uk/event/763/timetable/?view=standard_inline_minutes

IAM core technologies

IAM is a Spring Boot application
● currently based on the MitreID Connect
● deployed behind an NGINX
● stores data in a MariaDB/MySQL database

Horizontally scalable
● all state persisted in the database

We deploy IAM as a containerized service on top of Kubernetes
● autoscaling, zero downtime rolling updates

14

https://github.com/mitreid-connect/OpenID-Connect-Java-Spring-Server

IAM in High Availability

● Starting from version 1.8.0, the IAM service can be
deployed in High Availability mode

○ IAM supports session data externalization
○ IAM becomes a completely stateless application

● About externalized sessions: IAM relies on redis as
external component used to store session data

● Tests in progress: IAM has been deployed with 3
replicas on the dev IAM instance (at CNAF)

○ we faced some cluster limits
○ we planned to use a testbed hosted at CERN

15

16

Future IAM developments

Planned release: IAM v1.8.2

Done:

● Spring dependency version update
● CERN HR suspended status synchronization #530
● Invalid request error when the AuthZ request is modified during the user approval step #554

and other minor fixes

In progress:

● Any token created by IAM admin have full access to IAM API #543
● Token column in database is a limited index and can lead to a "Duplicate entry" error #579

We are almost ready for a release; it will be available soon.

17

https://github.com/indigo-iam/iam/projects/11
https://github.com/indigo-iam/iam/issues/530
https://github.com/indigo-iam/iam/issues/554
https://github.com/indigo-iam/iam/issues/543
https://github.com/indigo-iam/iam/issues/579

Our roadmap
In progress:

● Add scope policy management into IAM dashboard #382
● IAM username update blocked by case insensitive "is username available" check #434
● Case sensitivity confusion between MySQL unique fields and JPA equals comparisons #550

To do:

● Local accounts: check password quality #544
● Support for AARC guidelines #467, #466, #469
● Can't add certificate with same subject and different issuer #454
● Client problems due to unsupported response types #601
● IAM should allow users to request account removal #362
● Support for Multi-factor Authentication #418
● Scalability/availability assessment
● Overall security assessment
● Support for OIDC Federation model

…

18

https://github.com/indigo-iam/iam/issues/382
https://github.com/indigo-iam/iam/issues/434
https://github.com/indigo-iam/iam/issues/550
https://github.com/indigo-iam/iam/issues/544
https://github.com/indigo-iam/iam/issues/467
https://github.com/indigo-iam/iam/issues/466
https://github.com/indigo-iam/iam/issues/469
https://github.com/indigo-iam/iam/issues/454
https://github.com/indigo-iam/iam/issues/601
https://github.com/indigo-iam/iam/issues/362
https://github.com/indigo-iam/iam/issues/418

19

Introduction to Federations

Identity Federations

● A method of linking a user’s identity
across multiple separate identity
management systems used by a group of
institutions and organisations

● Extended range of services offered to the
users

● A Web Single Sign On (SSO) is provided
● Only one account and password are

required within the federation
● Common technologies used in federated

identity management
○ SAML
○ OAuth/OpenID

20

21

SAML Federations

eduGAIN

● eduGAIN is an efficient, flexible way for
participating federations, and their affiliated
users and services, to interconnect at an
international level

● eduGAIN technology involves a metadata
service that aggregates all the Service and
Identity Providers information, and makes this
information available to federations

● eduGAIN coordinates necessary elements of the
federations’ technical infrastructure and provides
a policy framework controlling the exchange of
this information between Identity Federations

● An Indigo IAM instance can join a SAML
federation (e.g. eduGAIN) as a Service Provider

Source: https://edugain.org/
22

https://edugain.org/

EOSC AAI Federation

● Check-in acts as SAML Service Provider
● The ESCAPE IAM instance acts as SAML Identity Provider

○ since IAM can only act as SP, in order to integrate the ESCAPE IAM into the EOSC AAI federation an
OIDC-to-SAML proxy has been deployed

23

From Nicolas’ presentation

https://aai.egi.eu
https://iam-escape.cloud.cnaf.infn.it
https://github.com/IdentityPython/SATOSA
https://docs.google.com/presentation/d/1T6y1BmtSdVz94ZKuDhvJuyH90Z35WK3B1kZeHRXTSGc/edit#slide=id.p1

24

OpenID Connect Federation

OIDC Federation as a solution

● Issue: for participants in an Identity Federation, the onboarding process of the
OpenID Connect (OIDC) standard is not sufficient to dynamically establish
trust in the information exchanged

● Solution: the OpenID Connect Federation 1.0 specification, being finalised,
describes how two entities wishing to interact can dynamically retrieve and
resolve trust and metadata for a given protocol using a third-party Trust
Anchor

25

https://openid.net/specs/openid-connect-federation-1_0.html

OIDC Federation entities

● Trust Anchor (TA): publishes the configuration
of the Federation and the claims of recognition of
the parties belonging to the Federation

● Intermediary: Soggetto Aggregatore (SA) in
Spid, facilitates entry into the Federation,
publishes its configuration within the Federation
and claims of recognition by its descendants

● Leaf: Relying Party (RP) and OpenID Provider
(OP)

26

Trust
Anchor

OPOP

Intermediary

RPRPRPRP

Intermediary

SAML vs OIDC Federation

SAML OIDC Federation

A participant in several federations must
create ad hoc metadata for each federation

All federation participants publish their own
federation metadata (Entity Configuration),
which is the same for all federations to
which the participant belongs; the final
dynamically produced metadata is the
result of the various policies acquired by
the trust anchors applied to the Entity
Configuration

27

SAML vs OIDC Federation

 SAML OIDC Federation

● SPID-SAML
○ the SAML metadata can be compared to the identity card of a Service Provider (SP)
○ the characteristic information of a service is certified by AgID (Agenzia per l'Italia Digitale)

● SPID-OIDC Federation
○ the Trust Anchor guarantees the identity of the federation members
○ federation member declares their characteristics
○ e.g. in the declaration in lieu of affidavit, Mario Rossi declares and signs his characteristics

28

OIDC Federation overview

29

OIDC Federation overview

30

OIDC Federation overview

31

OIDC Federation overview

32

OIDC Federation overview

33

OIDC Federation overview

34

Trust Chain resolution flow

1

2

3

4
5

6

7

8
9

10
35More details in the backup slides

Thanks for your attention!

Useful references

IAM on GitHub: https://github.com/indigo-iam/iam

IAM documentation: https://indigo-iam.github.io/docs

IAM in action video: https://www.youtube.com/watch?v=1rZlvJADOnY

For general information:

● OAuth 2.0: https://oauth.net/2/ and OAuth 2.1: https://oauth.net/2.1/
● OpenID Connect: https://openid.net/connect/
● OpenID Connect Federation: https://openid.net/specs/openid-connect-federation-1_0.html

Contacts:

● iam-support@lists.infn.it

37

https://github.com/indigo-iam/iam
https://indigo-iam.github.io/docs
https://www.youtube.com/watch?v=1rZlvJADOnY
https://oauth.net/2/
https://oauth.net/2.1/
https://openid.net/connect/
https://openid.net/specs/openid-connect-federation-1_0.html
mailto:iam-support@lists.infn.it

Questions?

Backup slides

Terminology

● Entity Statement: a signed JWT issued by a superior entity (TA or SA) concerning a
descendant entity (RP, OP or SA) and containing the descendant's public key, the
Trust Marks issued and the metadata policy to be applied to the subject metadata

● Entity Configuration: an Entity Statement issued by an Entity about itself, in
self-signed JWT format; it contains the Entity's signing keys and further data used to
control the Trust Chain resolution process, such as authority hints

● Trust Mark: statement of conformance to a well-scoped set of trust and/or
interoperability requirements as determined by an accreditation authority, in signed
JWT format; the Leaf that acquires the trust mark during the onboarding phase must
include this in its EC as a recognition badge

● Metadata: document describing an implementation of an OpenID Connect entity

40

Terminology

● Metadata policy: the Trust Anchor publishes the rules and policies to be
applied on descendant metadata

● Authority hint: an array of url values corresponding to the identifiers of the
superior entities (TA or SA) issuing an ES for their descendants

● Federation Entity Discovery: collection of EC and ES; starts from a Leaf
entity until the TA is reached

● Trust Chain: validation procedure of the EC and ES sequence collected
through Federation Entity Discovery, the successful outcome of which is a
final metadata related to an entity and the expiry date by which it must be
updated

41

Federation API Endpoints

All participants:

● .well-known/openid-federation: well known web path where the EC is located
● federation_resolve_endpoint: url where the ES can be obtained with pre-processed Trust

Chains

Trust Anchor and intermediaries:

● federation_listing_endpoint: url where the list of descendants can be obtained in JSON
format

● federation_fetch_endpoint: url where the ES in JWT format of the descendants are
published

● federation_trust_mark_status_endpoint: url where it is possible to check whether a Trust
Mark is still active or not

● federation-historical-jwks: url where the list of historicised TA keys can be obtained

42

Trust Chain

The Trust Chain is a sequence of JWTs that
are issued by a leaf entity, zero or more
intermediate authorities, and a trust anchor.

The Trust Chain linking the declarations to
each other can be verified by signing each
declaration. Once verified, the metadata
policy is applied and the resulting final leaf
metadata is saved with an expiry date

43

Trust Chain resolution flow

1. The first step is to get the EC of a leaf entity by querying its .well-known/openid-federation endpoint
2. The EC contains the authority_hints claim, a JSON array listing entity IDs of intermediate authorities or trust

anchors
3. The EC of the intermediate authority is needed to know the URL of its federation fetch endpoint
4. An HTTP request with the sub request parameter is sent to the federation fetch endpoint (e.g.

https://ia.example.com/fetch ?sub=https://rp.example.com)
5. The federation fetch endpoint returns a JWT (ES) that indicates that the intermediate authority authorizes the

leaf entity
6. The upper authorities of the intermediate authority are listed in the authority_hints claim in the EC of the

intermediate authority
7. The EC of the trust anchor is needed to know the URL of its federation fetch endpoint
8. An HTTP request with the sub request parameter is sent to the federation fetch endpoint (e.g.

https://ta.example.com/fetch ?sub=https://ia.example.com)
9. The federation fetch endpoint returns a JWT (ES) that indicates that the trust anchor authorizes the

intermediate authority
10. The entity configuration of the leaf entity and the JWTs issued from the federation fetch endpoints consist of a

Trust Chain

44

The perspective of an OpenID Provider

User-Agent OP RP Trust Anchor

OIDC AuthZ Request signed by the RP
Entity Configuration Request
https://rp.example.it/.well-known/openid-federation

Entity Configuration Response

Validation of Trust Mark

Route to authority_hints

Entity Configuration Request
https://ta.example.it/.well-known/openid-federation

Entity Configuration Response

Response validation
and obtaining fetch
endpoint Entity Statement Request about the RP

https://ta.example.it/fetch?sub=https://rp.example.it

Entity Statement Response about the RP

Response validation,
Trust Chain evaluation,
enforcement of metadata policies,
deriving the final PR metadata

RP registration

HTTP 200 - auth code response

The user submits the login form and give consent

45

OpenID Connect communication

● In a typical implementation of identity provider, identifiers of relying parties
(clients) are under the management of the identity provider

○ The identifiers are unique only in the realm of the identity provider
● In the OIDC Federation world, every federation entity has a globally unique

identifier
○ The globally unique identifiers, i.e., entity IDs, can be used as a client ID in OAuth/OIDC

requests
○ An authorization request like below can be made

https://idp.example.com/authorize?request_uri=...& client_id=https://rp.example.c
om

46

OpenID Connect communication

There are two alternative approaches to establish trust between a RP and an OP

● Automatic Registration: enables a RP to make Authentication Requests
without a prior registration step with the OP; the OP resolves the RP's EC
from the Client ID in the Authentication Request, following the process defined
in the previous slide

● Explicit Registration: involves performing an explicit registration step for a
new client before the RP interacts with an OP for the first time, similar to the
process specified by OpenID Connect Dynamic Client Registration 1.0, but
where the client registration request contains the Entity Configuration or an
entire Trust Chain

47

https://openid.net/specs/openid-connect-federation-1_0.html#OpenID.Registration

