

QCD in Extreme Conditions

Use case for the WP1
of the CN-HPC of the PNRR

MICHELE PEPE INFN Sez. Milano – Bicocca

Context

Forces in Nature: Strong, Weak, Electro-magnetic and Gravitational

strong but short range: scale of particle physics

weak but long range: macroscopic scale

- Strong Interactions: responsible of the formation of protons and neutrons, and of their binding to form atomic nuclei (almost 100% of the mass of our body and of what we see)
- Strong Interactions play a crucial role also in nuclear physics and in astrophysics: Quark-Gluon plasma, neutron stars, early Universe, etc

• Extreme Conditions: high temperature, finite density, background fields, etc

Context

• Thanks to experimental results at particle colliders and to their interpretation and understanding by theorists we have a <u>fundamental</u> quantum theory of Strong Interactions

Quantum ChromoDynamics (QCD)

Matter fields

Quark and AntiQuarks: Up, Down, Strange, Charm, Bottom, Top

Gauge fields
Gluons:
carrier of the interaction
"glue" that binds quarks

$$\sigma \simeq (0.4 {
m Gev})^2 \simeq 10^5 {
m N}$$
 $\sigma = {
m M}\,{
m g} \qquad {
m M} \sim 100\,{
m people}$

As strong as a cm-thick steel cable but 13 orders of magnitude thinner

The Yang-Mills cableway

Lattice Field Theory and HPC

1974: K. Wilson proposes to define QCD on a space-time lattice

- ! The theory is formulated in terms of a **discrete** number of variables (=complex numbers);
- Lattice QCD is the only currently known formulation allowing to study QCD <u>non-</u> <u>perturbatively</u> from first principles; the theory can be put on a computer and solved numerically;
- A very demanding computational challenge: order 10¹⁰ variables

QCD in Extreme Conditions

- The steady increase of computing power is essential but in many cases is not enough: it is necessary to develop new algorithms and computational methods
- The study of QCD in Extreme Conditions, namely, high temperature, finite density, with external background fields is numerically demanding
- The study of QCD at finite temperature T is challenging, $T_{max} \sim 1$ GeV: two very different energy scales (=length scales), T and T=0, have to simulated at the same time (!)

QCD at high temperature

• solution: formulation of QCD in a moving reference frame

Shifted boundary conditions

$$\phi(\vec{x}, L_0) = \phi(\vec{x} + \vec{\xi}, 0)$$

One measures the thermodynamics quantities only at the temperature T of interest

- Both the theoretical formulation and its computational implementation turn out to be very effective and efficient
- We would like to apply the same technique to QCD

QCD in Extreme Conditions: Use case

- The main target of this use case is to deploy a parallel code to perform efficient Monte Carlo simulations of QCD in the completely unexplored regime of the very high temperatures
- Definition of the theoretical and algorithmic strategies to compute the entropy density (primary observable) in a moving reference frame
- Development of an efficient parallel MPI Monte Carlo code to study lattice QCD at finite temperature with shifted boundary conditions with the aim of reaching $T\sim100$ GeV.
- The parallel code has to have a good strong scaling in order to run efficiently jobs requiring up to about 5000 -10000 cores.
- The code will simulate quarks using the O(a)-improved Wilson formulation; it will be a development of the open source OpenQCD code.
- The use case has also two additional activities:
- 1) preparation of parallel codes to investigate QCD at finite density and in external background fields with Monte Carlo simulations on the lattice.
- 2) development of a code to study the spin polarization in the QCD plasma

An example of target simulation

• Monte Carlo simulation of Lattice QCD: generation of many gauge field configurations; numerically it corresponds to solving many times the Dirac equation

$$\eta = D\chi$$
 D: large and sparse $(5 \times 10^9 \text{ by } 5 \times 10^9)$

- Global system size: $288^3 \times 16 = 3.8 \times 10^8$ sites
- MPI grid: $18 \times 18 \times 18$ cores = 5832 cores. Local lattice $V=16^4=6.5 \times 10^4$ sites

gluon A_{μ} quark ψ

- For each site D requires to compute several matrix-vector multiplication U*v U is 3×3 and v 3×1; we need 8 U and 36 v giving (8×18+36×6)×8=2880 bytes. Load 2880 bytes and store 4×6×8= 192 bytes, i.e. memory transfer B=3072 bytes per site (improved with smart coding)
- The computation consists in multiply&add operations amounting to F=1400 Flop per site

 For I=B/F=2.2 bytes/Flop

 Memory bandwidth limited
- For a Skylake node we have I= 256 Gb/s/ 3.2 TFlop/s =0.08 bytes/Flop
- Each core has to pass data continuously to n.n. cores: this is an addition bottleneck w.r.t. the purely computational effort and requires a fast (100-200 GB/s) **infiniband network**

Computational resources required

- Need to access a small-medium cluster for code development (start&stop) with an infiniband network: CNAF. 3 Mch
- Need to access a larger HPC system for advanced tests and for benchmarking on system of realistic size: Cineca. 20 Mch

Exchanges with WP5 activity

- Creation of a repository of gauge configurations once the production phase will be entered <u>People involved</u>
- INFN Milano Bicocca
 M. Pepe (staff)
- INFN Bari
- L. Cosmai (staff)
- University of Milano Bicocca
- L. Giusti (staff), M. Bresciani (PhD),
- D. Laudicina (PhD), P. Rescigno (PhD)

- University of Florence
- F. Becattini (staff), E. Grossi (RTDA)
- University of Calabria
- A. Papa (staff)

This work is (partially) supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU.

14