

Peter Wagner

University of Pennsylvania

for the TRT Community

Outline

- ATLAS Inner Detector and Transition Radiation Tracker (TRT) will skip this one (see Jahred's talk)
- TRT DAQ and Electronics Overview
- From straw to recorded signal
- Front End Functionality and Calibrations
- TRT Fast-OR Trigger
- Resynchronization
- Data Compression
- Conclusion

TRT Electronics – Overview

Triggers, clockDataElectrical

--- Optical

Straw Signal - Recorded Signal

- Avalanche electrons drift to wire, create signal of ~ 2 keV (MIP) with max. drift time ~50ns =>
 - Apply tracking threshold (~ 300 eV) to discriminate from noise
 - Noise rate ~ 300 kHz
 - Readout window per trigger: 3 x LHC bunch crossings (25ns)
- Measurement of straw signal: 3.12ns time bins => 120um hit precision achievable
- Separate threshold for transition radiation at ~6 keV (=> dual readout scheme → later!)
- Store 1 TR bit per bunch crossing

TRT Electronics – Front End

8 straw channels per ASDBLR

"DTMROC": "Drift Time Measurement Readout Chip"

Consists of two parts mounted back to back

"ASDBLR":

"Amplifier Shaper Discriminator Baseline Restorer"

TRT Front End – Signal shaping

In practice:

- Ensure uniform tracking hit efficiency by calibrating tracking thresholds to constant noise occupancy (300 kHz)
- Method:
 - Take noise data, measure occupancy
 - Correct deviations from 300kHz using fits to occupancy vs. threshold curves
 - Iterate...
- Duration ~ 10 minutes. Done after any system intervention as final check.

In practice:

- Radiation damage affects gain of ASDBLR
- Use test pulse with known amplitude to measure amount of radiation damage over time

Minimize impact from radiation damage ("Single Event Upsets"):

- Expected SEU rate in full system ~Hz at design luminosity
- Key DTMROC registers triplicated
- → During data taking:
- All registers monitored during and rewritten in case of change
- stored in database for further evaluation

- Analog and digital boards powered separately
- Grounded differently
- => Tracking and TR thresholds sensitive to low voltage setting!
- → Voltages continuously monitored
- → Developed tools to investigate possible problems
- → can easily modify voltage settings if necessary

The TRT Fast-OR Cosmics Trigger

- After Sept. 2008 LHC incident → decision to finalize the trigger for cosmics data
- Motivation:
 - High good-track rate
 - High track rate in the end-cap region
 - Independence from other subsystems

Statistics doubled within a week!

Implementation was quick:

First tracks Oct 29th 2008 Timing-in completed May 2009

TRT Electronics – Fast-OR Trigger

Pulse at TTC board: "OR" of ~240 attached straws

- → OK for cosmics but too coarse for collisions
- → see J. Penwell's talk

Fast-OR Trigger – Implementation

Implementation: Use DTMROC high thresholds lowered to ~MIP levels in TRT barrel

- ~a third of all straws that the track crosses have hits
- Advantage: very low noise
- Minor disadvantages:
 - makes high threshold calibration difficult due to thresholds at MIP level
 - no configuration data transmission from front end possible (no SEU monitoring)

Fast-OR Trigger – Results

- Very good trigger timing jitter of > 90% of triggers within 1 clock cycle
- Trigger rate ~10Hz with a high purity of ~98% events with tracks

- A major player in ATLAS commissioning!
 - Reference trigger for timing-in of other ATLAS triggers
 - Helped improve RPC timing jitter
 - Helped SCT and Pixel readout timing
 - Used for TRT first pass TR threshold calibration

TRT Electronics – Resynchronization

- Lots of "QPLL"s (Quartz PLLs clock stabilizer) in the system
- => sensitive to changes in the LHC clock, e.g. during injection ramping
- If any unlocked then data loss
 - => implemented QPLL monitoring and automatic
- resynchronization (= force QPLL re-lock) during data-taking
- Time needed: ~10 sec (during the injection ramp)

TRT Electronics – Resynchronization

- Further: Use same software framework to monitor for hardware failures and synchronization with rest of ATLAS during regular data-taking
 - Offending electronics part (TTC/ROD/...) is disabled without stopping data-taking run
 - Failures corrected "on the fly" by reconfiguring offending part
 - Total turnaround time ~10-30s
- Maximizes data taking efficiency
- Used **very** rarely

TRT Electronics - Data Compression

- Nominal TRT event size too big for ROD (at trigger rates > 20 kHz)
- Use Huffman encoding algorithm on ROD for lossless data compression
 - Basically: convert the most frequent bit patterns in straw data (simplest example: series of 0s) to short patterns using a lookup table
 - Compression factor ~ 10 (very approximate)
- Can deal with high occupancy events as we had in heavy ion running

Conclusion

- Very successful commissioning phase
- Fast-OR trigger played major role in ATLAS commissioning
- Automated procedures to maximize data taking efficiency
- Good quality data for 100% of LHC stable beam periods 2009-2011: highest in ATLAS

Inner Tracking Detectors		Calorimeters				Muon Detectors			
Pixel SC	T TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	TGC	csc
97.7 96	4 100	94.4	98.7	99.3	99.2	98.5	98.3	98.6	98.3
Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams at vs=7 TeV between March 30 th and August 14 th (in %)									

Thanks to all the TRT community for their hard work!!

Backup

The ATLAS Transition Radiation Tracker

TRT barrel

- 3 * 32 modules
- 1.44 m straws parallel to beam axis
- wires electrically split in the middle to reduce occupancy (~1.5cm dead region)
- each end read out separately
- 105088 readout channels total
- 2 triangular front end boards per module

The ATLAS Transition Radiation Tracker

2 TRT end-caps, each with

- 20 "wheels" with 8 layers of straws each
- 39cm long radial straws
- 122880 readout channels

Occupancy and Rate

- Optimal tracking threshold configuration at ~2% noise occupancy
- Track occupancy per straw: ~3% at instant. pp luminosity 10³¹ cm⁻²s⁻¹
- Expect occupancy of ~30-40% at LHC pp design lumi 10³⁴ cm⁻²s⁻¹
- (Max. track rate per straw: ~20MHz due to ~50ns drift time)
 - TRT performed well in occupancies of up to ~90% at moderate trigger rate (~few 100 Hz) during heavy ion running due to lossless data compression

