Physics with the ALICE TRD

Yvonne Pachmayer, University of Heidelberg for the **ALICE Collaboration**

- ALICE TRD
 - Physics cases (examples)
 - Quarkonia
 - Jets
 - Open Charm and Beauty
- Conclusion and outlook

<u>A</u> Large Ion Collider Experiment

Dedicated experiment to study all aspects of heavy ion collisions at LHC

TRD for

- Electron ID at p > 1 GeV/c
- Fast (6 μ s) triggering for high-p₇ + PID
- Improving the momentum resolution

TRDs for the third Millennium, Bari 2011

Yvonne Pachmayer (University of Heidelberg)

Transition Radiation Detector (TRD)

O. Busch

Parameters :

- Radial position: 2.9 < r < 3.7 m</p>
- |η| < 0.9, 0 <φ< 2π</p>
- 522 modules (18 super-modules) \rightarrow ~675 m²
- ~25 m³ Xe/CO2 (85:15)
- 1.15 M readout channels
 - Gain Calibration with Krypton source

 \rightarrow J. Stiller

- ≈ 25% X₀
- weight ~ 30 t
- total power: up to 65 kW
- Detector Control System

TRDs for the third Millennium, Bari 2011

Yvonne Pachmayer (University of Heidelberg)

ALICE TRD Working Principle

- Charged particles at γ > 1000 give T.R. Photons
- Pion m = 140 MeV/c $\rightarrow p_{\pi} \approx$ 140 GeV/c
- Electron m = 0.5 MeV/c $\rightarrow p_e \approx 0.51$ GeV/c (significant T.R. photons)

Yvonne Pachmayer (University of Heidelberg)

PID Performance

Physics Motivation for the ALICE TRD

Systematic measurements in p+p, p+A, A+A

- Di-electron channel
 - Low mass vector mesons
 - $J/\psi \rightarrow e+e-$
 - Ψ' → e+e-
 - Y → e+e-
- Y' → e+e-
- $q + \overline{q} \rightarrow e+e$ Thermal
- $q + \overline{q} \rightarrow e+e-$ Drell-Yan

Single electron channel

- $D \rightarrow e + anything$
- $B \rightarrow e + anything$
- Coincidences of electrons and muons

Trigger for jets

TRD significantly expands the physics objectives of ALICE

- ➔ Provide information about the de-confined QGP medium state
 - e.g. J/ψ suppression or enhancement
- ➔ Initial scattering information and effect of the medium to it
 - e.g. Jet quenching

Heavy Flavour Production Open and Hidden

- Important probes to study the de-confined medium produced in nucleus-nucleus collisions
- Heavy-flavour quarks (c, b)
 - originate from initial scattering processes
- produced on a very short time scale ($\approx 1/(2m_0) \le 0.1$ fm/c)

 \rightarrow sensitive to the full history of the collision

Quarkonia From SPS/RHIC TO LHC

- Charmonium dissociation
- LHC: larger initial charm production than at RHIC
 - $\rightarrow\,$ increase in J/ ψ yield fingerprint of statistical hadronization at LHC

 \rightarrow direct signal for de-confinement

Quarkonia with ALICE TRD Simulation (I)

 2×10^8 central PbPb events generated with Hijing (10% most central)

Quarkonia with ALICE TRD Simulation (II)

Real Data: Pb-Pb @ 2.76 TeV No TRD PID

- Centrality: 0 40%
- Statistics: 5.1 M collisions

Tuned track selection and PID cuts

• TPC PID only: $|n\sigma_{e}| < 2$, $n\sigma_{\pi} > 3.5$, $n\sigma_{p} > 3.5$ cut on standard deviation of $(dE/dx - \langle dE/dx_{ehv} \rangle)/\sigma$

> $\frac{J/\psi}{S/B} = 0.04 \pm 0.01$ Significance = 5.4 ± 0.19

Jet Energy and Shape Measurements

In Pb+Pb:

- Jet quenching as a probe of medium property
- Ncoll scaling violation
- Modification in momentum distribution

Energy Loss in the Medium

TRDs for the third Millennium, Bari 2011

Yvonne Pachmayer (University of Heidelberg)

Open Charm and Beauty

AA collisions

- Study hot and high density medium
- Normalization for quarkonia
- pA collisions
 - Disentangle initial and final state effects
- pp collisions
- Test pQCD in a new energy domain $3.5 7 \times \sqrt{s}_{Tevatron}$
 - c production at upper edge of FONLL prediction, at Tevatron and RHIC
- Probe gluon PDF down to $x_{Bjorken} \sim 10^{-4}$
 - ALICE aims to measure charm cross section $p_{_{+}} < 1 \text{ GeV/c}$
- Reference for pA and AA collisions

<u>Semi-electronic</u> <u>decays:</u>

 $D^0 \rightarrow e^+$ + anything

- $D^{t} \rightarrow e^{t}$ + anything
- $B^{\scriptscriptstyle \pm} \to e^{\scriptscriptstyle \pm} \text{+}$ anything
- $B \to D \to e^{\scriptscriptstyle \pm}$ + anything

Reconstruction of Electrons from Semi-electronic c/b Decays

Analysis Strategy

- Electron Identification with TOF, TPC and TRD
- Remaining hadron contamination determined via fits of dE/dx in momentum slices
- Requirement of a hit in the innermost layer of ITS (r = 3.9 cm) to reduce bkg from photon conversion
- Acceptance and Efficiency Correction (PID, selection, reconstruction, ...)
- Subtraction of the background via data-tuned MC cocktail

Electron Identification with the TRD (I)

- Reference charge deposit distributions
 - Electrons and pions
 - Test beam data (Discrete momentum steps)
 - Lookup table
 - Muons, kaons, protons
 - Scaled via parameterization from GEANT
 - Overall normalization
 - Test beam data compared to pions from K⁰-decays
- Probabilities for full track calculated via Bayes' theorem

Simplest method of TRD PID: Likelihood on total charge

TRDs for the third Millennium, Bari 2011

Yvonne Pachmayer (University of Heidelberg)

Electron Identification with the TRD (II)

Likelihood distribution

- Momentum dependent cut for constant electron efficiency
- Tuned with electron tracks from conversion

- Rejection power (Pions/Protons)
 - Determined with pions from K⁰-decays

Threshold parameterized & used in analysis

M. Fasel (Univ. Darmstadt) PhD thesis

Electron Identification with the TRD (III)

TRD electron identification efficiency Electron likelihood 0.5 0.4 0.3

Tracking efficiency in MC (realistic detector description)

Cross-Check with electrons

Electron identification efficiency

from conversion

Cross-Checks and Efficiency Evaluation

0.9

0.8

0.7 0.6 25 Tracklets

Reference electrons from γ -conversions

ALICE Performance

pt

10

Inclusive Electron Spectrum

Electron identification

- TOF: 3σ electron hypothesis
- TRD: slides before
- TPC: 0-3σ_e
- Efficiency and acceptance corrected
- Converted to cross-section with VdM results
- Systematic Uncertainty
 - Variation of applied cuts
 - TRD: # tracklets, efficiency \rightarrow 10%
 - Total error: 20%

Inclusive Electron Spectrum

Inclusive Electrons compared to Cocktail

Cocktail contains

- γ conversion ($\pi^{0} \rightarrow \gamma \gamma, \gamma \rightarrow e^{\dagger}e^{-}$)
- π⁰, η, η' Dalitz decays
- ρ, φ, J/Ψ, Y decays
- QCD photons based on NLO calculations (W. Vogelsang)

TRDs for the third Millennium, Bari 2011

 $\pi^{\scriptscriptstyle 0}$ input based on charged pion measurement with ALICE

- Heavier mesons implemented via m₁ scaling
- J/Ψ, Y parametrized from ALICE and CMS measurements
- Systematic uncertainty: ~ ±7% above p, > 2 GeV/c

Yvonne Pachmayer (University of Heidelberg)

Electrons from Semi-electronic c/b Decays

 → FONLL b + c in agreement with data
→ Consistent with prompt charm measurement from D mesons, where charm dominates

Beauty Decay Electrons

TRDs for the third Millennium, Bari 2011

Analysis of Pb-Pb @ 2.76 TeV ongoing

- TRD not yet included
 - \rightarrow PID systematic uncertainty 30%
 - \rightarrow No high p,reach
- TRD performance studies in Pb-Pb ongoing

Conclusion and Outlook

TRD significantly expands the physics reach in ALICE

- Quarkonia, open heavy flavour, jets, …
 - \rightarrow Study the de-confined medium produced in nucleus-nucleus collisions
- TRD provides good electron identification
- TRD allows to enhance rare probes due to trigger capabilities

Further more powerful PID methods with TRD under development

2D likelihood, neural networks, ...

Apply TRD PID algorithm in further analysis strategies

- First year PbPb statistics will soon hopefully significantly increase
 - \rightarrow Allows TRD to come into the game (Performance studies in Pb-Pb already started)

...

Back-Up

TRDs for the third Millennium, Bari 2011

Yvonne Pachmayer (University of Heidelberg)

Quarkonia Simulation

Nuclear Modification Factor at RHIC Energies

RAA of electrons from heavy flavour decays

- At high p, similar suppression like light hadrons
- Beauty contribution should dominate at p, > 4 GeV/c

 \rightarrow disentangle charm and beauty contribution

TPC nsigma

