Triggering with the ALICE TRD

Jochen Klein for the ALICE collaboration

Physikalisches Institut University of Heidelberg

TRDs for the Third Millenium 4th Workshop on Advanced Transition Radiation Detectors Bari, September 2011

Outline

- triggering in ALICE
- concept of the TRD triggers
- on-line reconstruction
- on-line electron identification
- triggers with the TRD

Jochen Klein (Univ. of Heidelberg)

ALICE trigger detectors

- ► V0
- SPD
- EMCAL
- PHOS
- TRD
 - ► full coverage of central barrel: $|\eta| < 0.9, \ \varphi \in [0, 2\pi]$
 - ► e/π-separation by transition radiation
 - short drift time $pprox 2\mu s$
 - track reconstruction in Front-End Electronics
- muon spectrometer (forward)

ALICE trigger scheme

Constraints on trigger rates (pp):

level	time after int.	limited by	limit
L0	$\sim 800~{ m ns}$	dead time	$\sim 100~\rm kHz$
L1	\sim 7 $\mu{ m s}$	read-out bandwidth	$\sim 2.5~{ m kHz}$
L2	$\sim 100 \; \mu { m s}$	input to High-Level Trigger	$\sim 1.5~{ m kHz}$
HLT		$1 \; GB/s$ to tape	

- so far mostly min. bias data taking
- rare triggers (L0) for the central barrel started this summer
 - EMCAL: jets
 - PHOS: photons and jets
 - SPD double-gap: diffractive events
- level-1 triggers from EMCAL and TRD

Jochen Klein (Univ. of Heidelberg)

Concept

- track segments in TRD layers (tracklets)
- match tracklets \rightarrow tracks
- straight line fit $ightarrow p_{\perp}$
- average electron likelihood \rightarrow PID
- track-based triggers

TRD trigger based on partial readout (tracklets) \Rightarrow high Level-0 rate needed

Jochen Klein (Univ. of Heidelberg)

Track-based triggers

- ► single high-p⊥ particle e.g. used for cosmics
- ▶ high-p⊥ jet requiring minimum number of tracks above p⊥ threshold comprises single high-p⊥ as degenerate case
- single high-p⊥ electron combining tracklet PID to global PID
- di-electron requiring two tracks of opposite charge ultimately calculating invariant mass, e.g. for J/Ψ, Υ

Jochen Klein (Univ. of Heidelberg)

Readout tree

- hierarchical readout
- ▶ no back-pressure, low latency

Jochen Klein (Univ. of Heidelberg)

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit
 + corrections + p₁-cut

- stack-wise tracking in Global Tracking Unit (FPGA based)
- ► calculate L1 trigger based on p_⊥ + PID of individual tracks

y, d_y from fit z from pad row PID from Q_0 , Q_1

Jochen Klein (Univ. of Heidelberg)

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit
 + corrections + p⊥-cut
- stack-wise tracking in Global Tracking Unit (FPGA based)
- ► calculate L1 trigger based on p_⊥ + PID of individual tracks

Multi-Chip Module (PASA + TRAP): amplification + digital processing connected to 18+3 pads

Jochen Klein (Univ. of Heidelberg)

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit + corrections + p⊥-cut
- stack-wise tracking in Global Tracking Unit (FPGA based)
- ► calculate L1 trigger based on p_⊥ + PID of individual tracks

Multi-Chip Module (PASA + TRAP): amplification + digital processing connected to 18+3 pads

Jochen Klein (Univ. of Heidelberg)

Digital filtering

- pedestal filter common baseline for all channels
- gain correction

$$O(t) = \gamma_n \cdot I(t) + \rho_n$$

values taken from Krypton calibration (s. talk by Johannes Stiller)

tail cancellation

$$S(t) = 1_{(t \ge 0)} \cdot (\alpha_{\text{long}} \lambda_{\text{long}}^t + (1 - \alpha_{\text{long}}) \lambda_{\text{short}}^t)$$

Jochen Klein (Univ. of Heidelberg)

Triggering with the ALICE TRD

Event

Buffer

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit + corrections + p⊥-cut
- stack-wise tracking in Global Tracking Unit (FPGA based)
- ► calculate L1 trigger based on p_⊥ + PID of individual tracks

Multi-Chip Module (PASA + TRAP): amplification + digital processing connected to 18+3 pads

Jochen Klein (Univ. of Heidelberg)

Cluster finding

- cluster detected charge sum of three adjacent channels exceeds threshold
- position calculated as:

$$y^{\rm COG} = \frac{1}{2} \frac{R-L}{C}$$

(values are baseline-subtracted)

correction from PRF:

$$\Delta y(y^{\rm COG}) = y - y^{\rm COG}$$

LUT calculated off-line

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit
 - + corrections + p_{\perp} -cut
- stack-wise tracking in Global Tracking Unit (FPGA based)
- ► calculate L1 trigger based on p_⊥ + PID of individual tracks

Multi-Chip Module (PASA + TRAP): amplification + digital processing connected to 18+3 pads

Jochen Klein (Univ. of Heidelberg)

Tracklet composition

- straight line fit calculated from accumulated charge sums in two adjacent channels
- Lorentz correction

$$\Psi_L = \tan(\omega\tau)$$

tilted pad correction

$$\Delta y = d_{\text{drift}} \cdot \tan(\alpha_{\text{tilt}}) \cdot \frac{z}{x}$$

ship information on transverse position, deflection, pad row and PID

Jochen Klein (Univ. of Heidelberg)

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit
 - $+ \text{ corrections} + p_{\perp}\text{-cut}$
- stack-wise tracking in Global Tracking Unit (FPGA based)
- ▶ calculate L1 trigger based on p⊥ + PID of individual tracks

Jochen Klein (Univ. of Heidelberg)

- chamber-wise tracking (ASICs)
 - digitization
 - digital filtering
 - cluster finding
 - straight line fit
 - $+ \text{ corrections} + p_{\perp}\text{-cut}$
- stack-wise tracking in Global Tracking Unit (FPGA based)
- ► calculate L1 trigger based on p_⊥ + PID of individual tracks

Exact simulation

- all calculations done on digitized data which are read out
- allows for detailed re-simulation of the full trigger chain
- simulation of TRAP and GTU

Tracklet performance – Monte-Carlo

- use simulation to understand influence of different parameters
- optimize efficiency multiple finding of tracklets expected from the algorithm
- ► achieve good position resolution of ~ 200µm
- ▶ achieve good deflection resolution of ~ 400µm (without tail cancellation)

Tracklet performance – data

- fit through tracklets assigned to a track
- plot residuals in position and deflection
- independent of any other data on-line monitoring
- check for correct drift velocity

Jochen Klein (Univ. of Heidelberg)

Tracking performance

 geometrically match on-line track to off-line track

▶ compare p⊥

- tracking performs well up to high-p₁
- deviation from diagonal for very high p_⊥ expected from algorithm
- resolution about 15 % to be further improved by FEE tuning

Trigger performance

efficiency for "good" tracks:

 $\frac{N_{\rm matched}}{N_{\rm findable}}$

 $N_{\rm findable}$:

off-line tracks with at least 4 TRD tracklets

 $N_{\rm matched}$: track which is geometrically matched to a findable one

► compare off-line p_⊥ when applying cut on on-line p_⊥

Timing

Tracklet / tracking timing

Jochen Klein (Univ. of Heidelberg)

- processing optimized for low latency tracking starts upon arrival of the first data
- total tracking time depends on multiplicity

 e^{\pm} identification – strategy

0.3

Q. (a.u.)

 summing charge in two configurable time windows

- enter lookup table with Q_0 (and Q_1)
- at the moment total charge is used
- assign electron likelihood to tracklet

lookup table is freely configurable \Rightarrow calculate off-line

1000

e^{\pm} identification – reference data

clean input sample from

$$\gamma \longrightarrow e^+ e^-$$

 $K^0 \longrightarrow \pi^+ \pi^-$

fit charge deposition

 $(\mathrm{Exp}\cdot\mathrm{Landau})\otimes\mathrm{Gauss}$

- (s. talk by Xianguo Lu)
- charge dependent electron likelihood
- define cut to cover wanted fraction of the electrons

 e^{\pm} identification – performance

- pion rejection controlled by adjusted electron efficiency
- ► typical values in simulation: for e_e = 90%: ~ 40
- ▶ typical values in real data: for $\epsilon_e = 90\%$: ~ 6 for $\epsilon_e = 80\%$: ~ 11
- differences between simulation and real data mostly understood,
 e.g. no on-line gain calibration yet

Cosmic trigger

- cosmic particles wanted for alignment and calibration
- ▶ first super-modules installed in horizontal position
 ⇒ very low rate of cosmic particles
- need for trigger on cosmic TOF as Level-0, TRD as Level-1 very pure sample

- first version using coincident charge deposition operated since 2008 all trigger infrastructure already commissioned
- moved to track-based trigger requiring just one track

Jochen Klein (Univ. of Heidelberg)

Triggering with the ALICE TRD

Bari, Sep 2011 24 / 30

Jet trigger - Concept

- use on-line reconstructed tracks of charged particles
- TRD stack covers an area in η-φ plane comparable to a typical jet cone (R ~ 0.4)
- ▶ ask for *N* tracks in one stack with p_{\perp} above threshold
- MC simulations confirm that this trigger becomes efficient for high-p_⊥ jets

Jochen Klein (Univ. of Heidelberg)

Jet trigger – efficiency from Monte-Carlo

- looking at PYTHIA jets produced in p^{hard} bins
- ► counting no. of charged tracks above p_⊥ threshold per stack
- classification according to leading MC jet in $|\eta| < 0.5$
- compare different thresholds

Jet trigger - rejection of min. bias events

- rejection of min. bias events determined from real data
- good rejection of ~ 10⁴ for typical threshold 3 tracks above 3 GeV/c

Jochen Klein (Univ. of Heidelberg)

Triggering with the ALICE TRD

Bari, Sep 2011 27 / 30

Jet trigger – raw spectra

- first analysis of real data
- two input samples:
 - min. bias
 - EMCAL L0 partial overlap with TRD

• UA1 jet finder (
$$R = 0.4$$
)

efficiencies as expected

Challenges

- low latency trigger requires complex readout electronics timing very critical
- calibration must be applied already on-line
- stable gain and drift velocity needed feedback loop for on-line adjustment
- geometric corrections for tracklet calculation

Summary & Outlook

- ▶ TRD in use as cosmic L1 trigger since 2008
- all on-line reconstructed tracks in readout crucial for commissioning
- jet trigger in operation
- electron trigger in preparation

TRD trigger group

Bastian Bathen, Tom Dietel, Norbert Herrmann, Benjamin Hess, Stefan Kirsch, Jochen Klein, Felix Rettig, Johanna Stachel, Hannes Wessels, Uwe Westerhoff

Jochen Klein (Univ. of Heidelberg)

Backup trigger logic

Jochen Klein (Univ. of Heidelberg)