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Open challenging Tasks

• (A) Can ML beat traditional numerical analysis methods for the solution of stiff ODEs and

PDEs?,

• (B) Deal with the so-called “curse of dimensionality” when trying to efficiently learn ML

models with good generalization properties, and

• (C) Discover from data the appropriate macroscopic quantities/physics for the emergent

dynamics,

• (D) Bridge Machine Learning with Physics-based Modelling, Discover Physical Laws from
Data
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Outline

• Can ML beat traditional numerical analysis methods for the solution of
stiff large-scale ODEs and PDEs?

◦ Numerical Solution of the Forward problem: the classical
way

◦ Solving the Forward (and INVERSE) Problem with Machine
Learning: Curse of Dimensionality

• Dealing with the Curse of Dimensionality

◦ Proposed Physics Informed Random Projection Neural
Network framework

◦ Benchmark Problems: The Forward Problem

• Discovery of Physics: The Inverse Problem: Constructing and
Analysing PDEs from BIG Data/ MANIFOLD LEARNING

3 / 31



The Forward and Inverse Problem in Complex Systems
Modelling

IT’s ALL ABOUT DISCOVERING AND SOLVING
DIFFERENTIAL EQUATIONS IN A CLOSED FORM
- Forward Problem: Numerical Solution of Large-Scale
Differential Equations
-
Inverse Problem: Modelling and forecasting the emergent
dynamics of multiphysics and multiscale systems from DATA
- Both remain open problems!
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The Forward and Inverse Problem in Complex Systems
Modelling
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Numerical Solution of the Forward and Inverse Problem for
Differential Equations
with Machine Learning: The “classical Machine Learning way"

Let’s assume a set of m points x i ∈ Ω ⊂ Rd of the independent
(spatial) variables, defining the grid in the domain Ω, nΩ points along
the boundary of the domain, ∂Ω and nt points in the time interval.
Then the “classical way” to solve (time-dependent) differential
equations in the general form

∂u

∂t
= L(x , u,∇u,∇2u, . . . ), (1)

where u satisfies the boundary conditions Bu = g , in ∂Ω (B is the
boundary differential operator) involves the solution of a minimization
problem of the form:
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Numerical Solution of Differential Equations
with Neural Networks: The “classical Machine Learning way"

min
P,Q

E (P,Q) :=
m∑
i=1

nt∑
j=1

∥∥∥∥dΨdt (.)− L(x i ,Ψ(.),∇Ψ(.),∇2Ψ(.), . . . )

∥∥∥∥2

+

(2)
nΩ∑
j=1

∥BΨ(.)− g∥2 ,

where Ψ(.) := Ψ(tj , x i ,N(tj , x i ,P,Q)) represents a “trial"
function approximating the solution u at x i and N(tj , x i ,P,Q)

is a machine learning algorithm; P contains the parameters of
the machine learning scheme (e.g. for a FNN the internal
weights W , the biases B, the weights between the last hidden
and the output layer W o), Q contains the hyperparameters.
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Machine Learning
Training is computationally demanding even for the simplest structures!

Iteratively: e.g. with quasi-Newton BFGS, Back-Propagation,
Adams etc.
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Curse of Dimensionality
In Life: The Curse of Dimensionality Saul Steinberg 1968
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Numerical Solution of the Forward Problem
The Proposed Method: RANDOM PROJECTIONS

Taking into account that the trial solution must satisfy the initial
value conditions yi (x0) = αi , i = 1, 2, . . . ,m, we set:

Ψi (t,wo
i ,pi ) = αi + (t − t0)Ni (t,wo

i ,pi ), (3)

where Ni (t,wo
i ,pi ) is a single-output FNN with parameters the

output weights wo
i = [wo

1i w
o
2i . . . wo

hi ]
T ∈ Rh, and pi contains

the remaining parameters associated with that network.
• we fix all the internal weights to 1

• centers of RBFs to be equidistant in the domain

• set randomly from appropriately chosen uniform distributions the
biases bji and the width parameters σji
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THE FORWARD PROBLEM: Numerical Solution of
Differential Equations
The Proposed Method

We seek a numerical solution based on n collocation points
t1, t2, . . . , tn. The objective function we seek to minimize is
given by:

L(W o) =
m∑
i=1

n∑
j=1

(
Mij

dΨNi

dt
(tj ,w i ,wo

i ,pi )− (4)

− fi (tj ,Ψ(tj ,W ,W o ,P)

)2

.

See that the proposed method results to a solution that can be
computed at any point of the domain. This is fundamentally
different from the traditional numerical schemes
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THE FORWARD PROBLEM: Numerical solution of
Differential Equations
The Proposed Method

The only parameters that have to be determined by training the
network are the output weights wo

ji .
For n collocation points, the outputs of each network Ni ,
i = 1, 2, . . .m, are given by:

N i (t1, t2, . . . tn,wo
i ,pi ) = Riwo

i , (5)

where N i (t1, t2, . . . tn,wo
i ,pi ) ∈ Rn, and

Ri = Ri (t1, . . . , tn,pi ) ∈ Rn×h is defined as

Ri (t1, . . . , tn,pi ) =

G1i (t1) · · · Ghi (t1)
...

...
...

G1i (tn) · · · Ghi (tn)

 . (6)
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THE FORWARD PROBLEM:Numerical solution of
Differential Equations
The Proposed Method

Thus, by setting
F (W o) = [F1(W o) · · ·Fq(W o) · · ·F(nm)(W o)]T , the new
update dW o(ν) at the (ν)-th iteration is computed by the
solution of the system

∇W o(ν)F dW o(ν) = −F (W o(ν)), (7)

where ∇W o(ν)F ∈ Rnm×mh is the Jacobian matrix of F .
In general h > n, i.e. the minimization problem in (7) is an
under-determined linear system where the Jacobian is not full
row-rank.
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THE FORWARD PROBLEM BENCHMARK ODEs/PDEs:
Numerical Results

• Four benchmark stiff ODE/PDE problems (with steep
gradients),

◦ van der Pol model,
◦ Robertson index-1 DAEs
◦ 1D Nonlinear Viscous Burgers PDE,
◦ 1D, 2D, Liouville–Bratu–Gelfand PDE

• We test the performance of the scheme, in terms of
◦ approximation accuracy
◦ computational times
◦ compare with the matlab ode suite ode23t and ode15s,

implementing a variable-step variable-order multistep
method, suitable for low-dimensional stiff and index-1 DAEs
problems
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Numerical Analysis Results
The Nonlinear Viscous Burgers Equation

ν
∂2u

∂x2 − u
∂u

∂x
= 0 (8)

in the unit interval [0, 1]. For our analysis, we considered two different
sets of boundary conditions:

• Dirichlet boundary conditions

u(0) = γ , u(1) = 0 , γ > 0 ; (9)

• Mixed boundary conditions: Neumann condition on the left
boundary and zero Dirichlet on the right boundary:

∂u

∂x
(0) = −ϑ , u(1) = 0 , ϑ > 0 . (10)
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The Nonlinear Viscous Burgers
Dirichlet BC
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Figure: (a,b) viscosity ν = 0.1: (a) Solutions for N = 40; (b) L2–norm vs
exact solution (c,d) viscosity ν = 0.007: (c) Solutions for N = 40; (d)
L2–norm vs. exact solution. 16 / 31



The Nonlinear Viscous Burgers
Execution Times

ELM SF ELM RBF
N 5% mean 95% 5% mean 95%
80 2.73e-03 4.70e-03 4.38e-03 2.31e-03 2.67e-03 3.16e-03
160 8.46e-03 9.97e-03 1.12e-02 7.16e-03 8.20e-03 9.08e-03
320 3.72e-02 4.23e-02 4.60e-02 3.52e-02 3.89e-02 4.28e-02
640 1.60e-01 1.67e-01 1.75e-01 1.56e-01 1.69e-01 1.97e-01

FD FEM
N 5% mean 95% 5% mean 95%
80 1.72e-04 3.37e-04 3.48e-04 2.33e-02 2.49e-02 2.76e-02
160 4.31e-04 4.55e-04 5.26e-04 5.68e-02 6.39e-02 6.95e-02
320 1.29e-03 1.33e-03 1.44e-03 1.22e-01 1.24e-01 1.31e-01
640 1.05e-02 1.10e-02 1.16e-02 3.34e-01 3.40e-01 3.55e-01

Table: Execution times (s) for the Burgers equation (8) with Dirichlet
boundary conditions (9) and ν = 0.1. 17 / 31



The Nonlinear Viscous Burgers
The Bifurcation Diagram with Mixed BC
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Figure: (a) One-dimensional Burgers equation (8) with mixed
boundary conditions. Bifurcation diagram with respect to the
Neumann boundary value θ as obtained for ν = 1/10, with FD, FEM
and ELM schemes with a fixed problem size N = 400; (b) Zoom near
the turning point.
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THE INVERSE PROBLEM: CONSTRUCTING PDES
FROM BIG DATA

The assumption here is that the emergent dynamics of the complex system under study on a domain
Ω × [t0, tend ] ⊆ Rd × R can be modelled by a system, of say m PDEs in the form of:

∂u(i)(x, t)

∂t
≡ u

(i)
t = F (i)(t, x, u(x, t),Du(x, t),D2u(x, t), . . . ,Dνu(x, t), ε),

(x, t) ∈ Ω × [t0, tend ], i = 1, 2, . . . ,m

(11)

where u(x, t) = [u(1)(x, t), . . . , u(m)(x, t)], F (i), i = 1, 2, . . .m is a non-linear operator, Dνu(x, t) is
the generic multi-index ν-th order spatial derivative at time t i.e.:

Dνu(x, t) :=

{
∂|ν|u(x, t)

∂x
ν1
1 · · · ∂xνd

d

, |ν| = ν1 + ν2 + · · · + νd , ν1, . . . , νd ≥ 0

}
,

and ε denotes the (bifurcation) parameters of the system.
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THE INVERSE PROBLEM: DISCOVERING THE LAWS OF
PHYSICS FROM DATA -> MANIFOLD LEARNING

A manifold is a topological space that locally resembles Euclidean space near
each point. More precisely, an n-dimensional manifold is a topological space
with the property that each point has a neighborhood that
is homeomorphic to an open subset of n-dimensional Euclidean space.
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MANIFOLD LEARNING FIND THE INTRINSIC
DIMENSION AND TOPOLOGY OF THE EMERGENT
DYNAMICS

... AND A SET OF MACROSCOPIC VARIABLES THAT
PARAMETRIZE IT.
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MANIFOLD LEARNING: METHODS
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THE INVERSE PROBLEM: CONSTRUCTING PDEs
FROM DATA: THE SCHEMATIC
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THE INVERSE PROBLEM: IDENTIFYING THE
FITZHUGH-NAGUMO PDES FROM DATA PRODUCED
BY LATTICE BOLTZMANN SIMULATIONS

The evolution of activation u : [x0, xend ]× [t0, tend ] → R and
inhibition v : [x0, xend ]× [t0, tend ] → R dynamics are described
by the following two coupled nonlinear parabolic PDEs:

∂u(x , t)

∂t
= Du ∂

2u(x , t)

∂x2 + u(x , t)− u(x , t)3 − v(x , t),

∂v(x , t)

∂t
= Dv ∂

2v(x , t)

∂x2 + ε(u(x , t)− α1v(x , t)− α0),

(12)

with homogeneous von Neumann Boundary conditions:

du(xend , t)

dx
= 0,

dv(x0, t)

dx
= 0.

du(xend , t)

dx
= 0,

dv(x0, t)

dx
= 0.

(13)
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THE INVERSE PROBLEM: THE DATA GRID

We end up with a dataset consisting of 40 (values of ε)×10
(initial conditions)×448 (time points ignoring the first 2s of the
transient)×40 (space points) ⋍ 7.168.000 data points.
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Figure: Coarse initial conditions for (a) u and (b) v for the training.
The grid is spanned with Chebychev-Gauss-Lobatto points for epsilons
in the interval [0.005, 0.995]
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THE INVERSE PROBLEM: IDENTIFYING THE SET OF
VARIABLES WITH DIFFUSION MAPS

ut = (ϕu
1 , ϕ

u
2 , ϕ

u
3) vt = (ϕv

1 , ϕ
v
2 , ϕ

v
3)

Features Total Loss Features Total Loss
1d (u) 4.3E-03 (u) 7.6E-03
2d (u, v) 6.37E-06 (u, v) 1.91E-05
3d (u, v , uxx) 2.77E-07 (u, v , vxx) 6.29E-07
4d (u, v , ux , uxx) 1.03E-07 (u, v , vx , vxx) 1.34E-07

Table: The “best” set of variables that can effectively parametrize the
intrinsic coordinates ((ϕu

1, ϕ
2
2, ϕ

u
3) and (ϕv

1, ϕ
v
2, ϕ

v
3)) and the

corresponding sums of total loses across all the values of the
bifurcation parameter ε.
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THE INVERSE PROBLEM: The reconstructed PDEs

Hence, the proposed feature selection approach based on
parsimonious Diffusion Maps, revealed correctly the structure of
the embedded PDEs in the form of:

∂u(x , t)

∂t
= F̂ u(u(x , t), v(x , t), uxx(x , t), ε),

∂v(x , t)

∂t
= F̂ v (u(x , t), v(x , t), vxx(x , t), ε)

(14)

where F̂ u and F̂ v are the outputs of the FNNs (or the RPNNs).
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THE INVERSE PROBLEM: The reconstructed Bifurcation
Diagram of the FHN dynamics
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Figure: Reconstructed bifurcation diagram from the Lattice Boltzmann
simulations of the FHN dynamics with respect to ε with FNNs and
RPNNs with feature selection.
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THE INVERSE PROBLEM: Computational time for training

The training phase of the FNN required 800 epochs and around
4 hours with minimum tolerance set to 1e − 07.
-
Instead, the training phase of the RPNNs for ût and v̂t required
around 8 minutes each in matlab R2020b using a single core of
an Intel i7-10750H CPU @ 2.60GHz and 16GB RAM, thus
resulting to a training phase at least 20 times faster.
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Conclusions

• The high-dimensionality that intrinsically characterizes the state-space
of relevant multiscale/complex problems, compounded by the inherent
modelling uncertainties across scales, severely challenge our ability to
efficiently understand, learn, analyze and control their collective
behavior.

• We proposed a new numerical framework based on Machine Learning
for the numerical solution of both the forward and inverse problems in
complex systems modelling based on Random Projection Networks
that deals with the Curse of Dimensionality and by coupling the
Equation-Free framework with Manifold Learning and Control

Requests: Access to 2 PHD students and 1 Post-doc researcher to a HPC
cluster for running large-scale agent-based simulations and for learning
physical-laws from BIG DATA with machine-learning
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