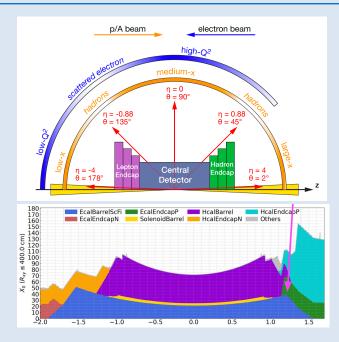

Status of ePIC forward dual RICH and overview of INFN R&D

Giornate Nazionali EIC _NET 2023, Corigliano - Rossano, Italia

Contalbrigo Marco – INFN Ferrara

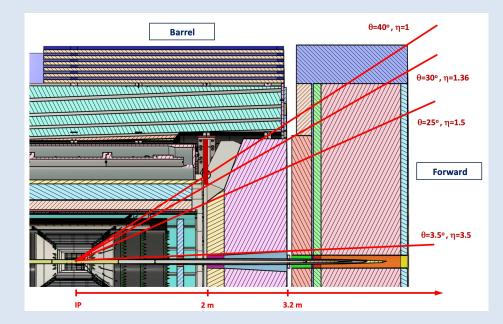
dRICH Collaboration

Compact cost-effective solution for particle identification in the high-energy endcap at EIC

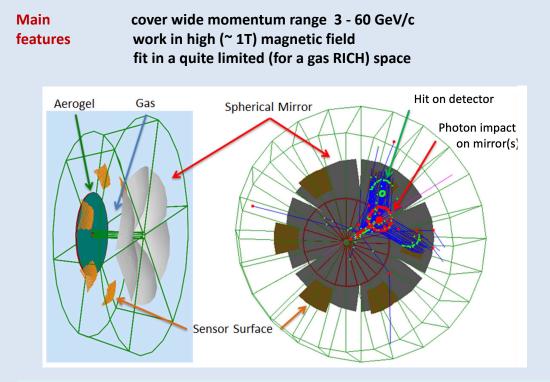


EIC Forward RICH

Forward particle detection

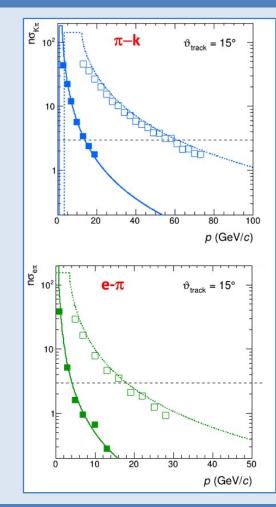

Hadron ID in the extended 3-50 GeV/c interval

Support electron ID up to 15 GeV/c



Essential for semi-inclusive physics due to absence of kinematics constraints

		Elec	trons and Photo	π/ K/p		
η	Nomenclature	Resolution σ _E /E	PID	Min E Photon	p-Range	Separation
1.0 to 1.5			$3\sigma e/\pi$ up to 15 GeV/c	50 MeV	≤ 50 GeV/c	≥ 3 σ
1.5 to 2.0		2%/E				
2.0 to 2.5		⊕ (4*-12)%/√E ⊕ 2%				
2.5 to 3.0						
3.0 to 3.5						


dRICH Baseline Design

dRICH: cost-effective compact solution

Radiators: Aerogel (n_{AERO} ~1.02) + Gas (n_{C2F6} ~1.0008)

Detector: 0.5 m²/sector, 3x3 mm² pixel \rightarrow SiPM option

dRICH Organization

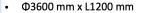
6.10.04 Particle Identification Level-3		CAM from Project					
	Ļ						
6.10.04.03 dRICH	Level-4	CAM from Project + DSTC from EPIC (M. Contalbrigo)					
	Ļ	Work packages lead from EPIC Work packages not yet active					
Photo-Detector	Level-5	R. Preghenella, INFN-BO, INFN-FE, INFN-CS, INFN-SA, INFN-CT, NISER					
Front-end Asics	Level-5	F. Cossio, INFN-TO, INFN-BO	Interlock	Level-5			
Data-acquisition	Level-5	P. Antonioli, INFN-BO, INFN-FE	Slow Control	Level-5			
Mechanics	Level-5	A. Saputi, INFN-FE, INFN-GE, JLAB, BNL	Cooling	Level-5			
Gas radiator	Level-5	F. Tessarotto, INFN-TS, BNL	Vessel	Level-5			
Mirror	Level-5	A. Vossen, DUKE, INFN-FE	Detector box	Level-5			
Aerogel Radiator	Level-5	G. Volpe, INFN-BA, INFN-FE, RICH Consortium	Mirror Alignment	Level-5			
Simulation	Level-5	M. Contalbrigo, INFN-TS, DUKE, INFN-FE	Power Supply	Level-5			

dRICH Forum

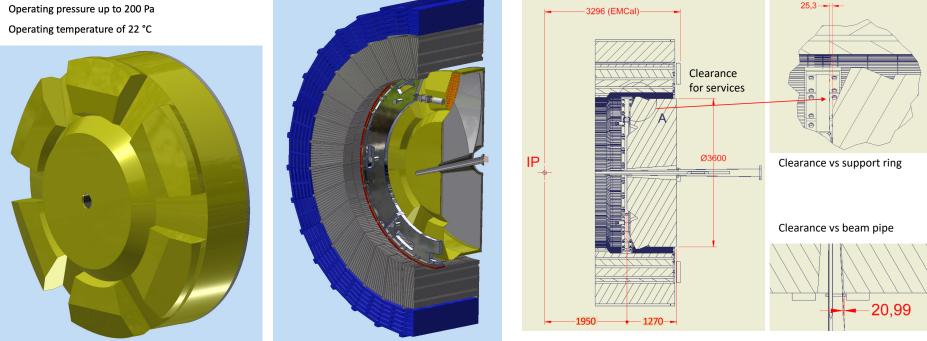
Dedicated mailing list:	Eic-projdet-drich-l (https://lists.br	l.gov/mailman/listinfo)			
	dRICH meetings Enter your search term	dRICH Simulation Meetings			
CerenkovPID	meetings of the dRICH DSC	There are 2 events in the future. Show			
dRICH Simulation Meetings Working Group Meetings pfRICH meetings Miscellaneous dRICH meetings	June 2023 Image: 21 Jun dRICH Meeting - PID Review REW Image: 21 Jun dRICH Meeting - Sensors and Electronics Image: 21 Jun dRICH Meeting - Sensors and Electronics Image: 2023 dRICH Meeting - Mechanics and Mirrors Image: 21 Jun dRICH Meeting - Sensors and Gas Image: 21 Jun dRICH Meeting - Radiators and Prototype Image: 21 Jun dRICH Meeting - Mechanics and Mirrors	June 2023 Image: 30 Jun Tutorial Series: dRICH Simulation Software (4/6) Image: 22 Jun Tutorial Series: dRICH Simulation Software (3/6) Image: 22 Jun dRICH Meeting - Performance Image: 16 Jun Tutorial Series: dRICH Simulation Software (2/6) Image: 15 Jun dRICH Meeting - Performance Image: 15 Jun dRICH Meeting - Performance Image: 15 Jun dRICH Meeting - Performance Image: 15 Jun dRICH Meeting - Detector Image: 15 Jun dRICH Meeting - Detector May 2023 Hord Mark 2023			
hpDIRC	a May dRICH Meeting - Readout Electronics April 2023 26 Apr dRICH Meeting - Geometry and Simulations	 25 May dRICH Meeting - Performance 18 May dRICH Meeting - Geometry 11 May dRICH Meeting - Shaping and IRT 04 May dRICH Simulation Meeting - Simulation chain and resolution 			

Every Thursday at 10:00 am EST (4:00 pm CET) https://indico.bnl.gov/category/422/

https://indico.bnl.gov/category/412/


Every Wednesday at 8:00 am EST (2:00 pm CET) https://indico.bnl.gov/category/472/

dRICH Layout

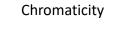

Simplified representation η=1.5 Detector Detector Mirror Aer ge Aerogel Exit η=3.5 Face Entrance Mirror Face

3D mechanical model

dRICH Vessel

- ٠
- ٠

Windows: sandwich panel made of two ~1 mm carbon fiber reinforced epoxy skins separated by 30 mm PMI foam or Al honeycomb (~ 1% X₀)


Shells: 3 mm (inner tube) to 8 mm (outer tube) thick carbon fiber epoxy composite (~ 4% X₀)

Skins formed with two layers of balanced weave laminate with fibers at 0°/90° and +/- 45° for uniform stiffness

dRICH Gas Radiator

50 GeV/c pions and kaons shot at eta 2.5									
Gas	Npe(pi /K)	Th_pi	Th_K	Sig_pi	Sig_K	N_Sig			
C2F6	16.03/ 14.94	36.8	35.67	0.32	0.33	3.5			
C4F10	24.8/2 3.8	48.63	47.8	0.29	0.30	2.8			

$$\Delta \theta = \theta_{\check{C}}(\lambda = 300 \text{nm}) - \theta_{\check{C}}(\lambda = 600 \text{nm})$$

$$\rho = \Delta \theta / \theta_{\check{C}} (\lambda = 300 \text{ nm})$$

$$\rho_{C2F6} = 1.8\%$$
; $\rho_{C4F10} = 2.4\%$;

Assume dRICH volume ~ 20 m³

 C_2F_6 density 5.73 Kg/m3 → 114 kg

Initial minimal quantity ~ 200 kg

 \simeq 500 kg could be enough for 10 yr of operation

Initial survey:

Several distributors contacted: availability confirmed by two:

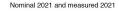
- SIAD S.p.A.
- Resonac Europe GmbH

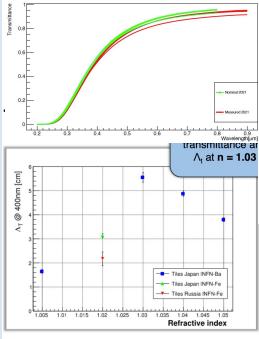
Yearly leaks are difficult to estimate:

- Filling and recovery operations 6%
- Filtering and maintenance 3%
- Leaks 10%
- Sampling, analysis, etc. 2%

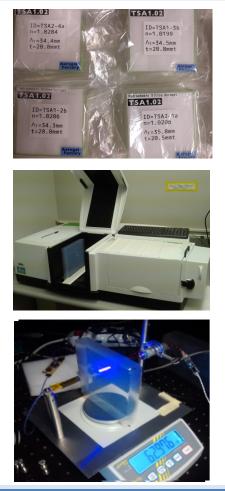
30 kg /yr emission \rightarrow 300 tCO₂ /yr

comparable to one intercontinental flight /yr

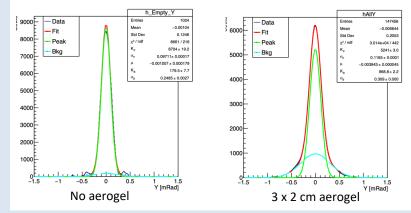

CERN new gas systems qualification standard:						
Target Leak flow at reference conditions	<1*10-3 STD cc/s					

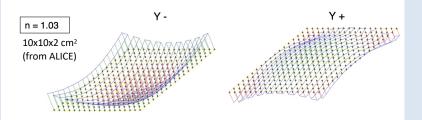

New standards should reduce significantly the losses and environmental impact

dRICH Aerogel Radiator


Aerogel Factory (BELLE-II) Initial evaluation & Reproducibility on small samples in sinergy with ALICE

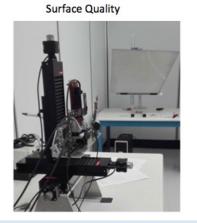
Transmittance & Transflectance

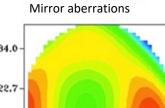



Density & refractive index

Laser spot bradening: Y profile

Touch Probe: planarity and thickness

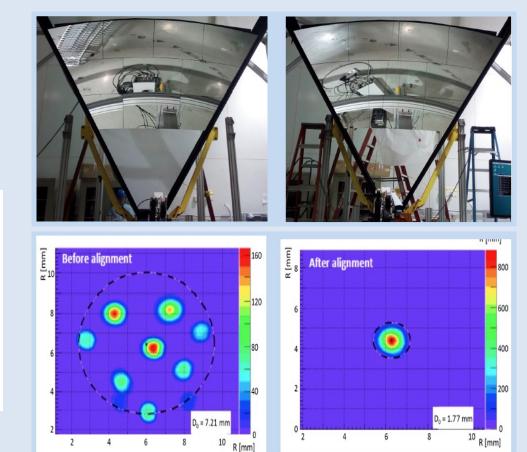


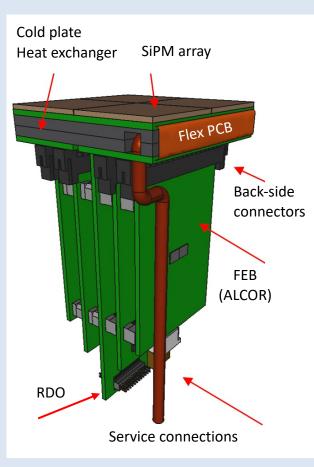

dRICH Mirrors

CMA Carbon fiber mirrors (HERMES, AMS, LHCb, CLAS12) cost-effective light & stiff solution: roughness driven by mandrel 1-2 nm rms surface accuracy better than 0.2 mrad radius reproducibility better than 1 %

Left

Y(mm)




Shack-Hartmann sensor

CLAS12 RICH QA laboratory @ JLab being refurnished

dRICH Photo-Detector

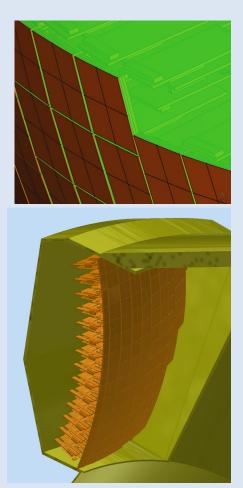
Photon Detector Unit (PDU):

Compact to minimize space

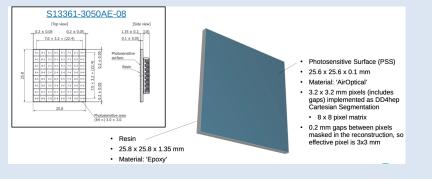
- 4x Hamamatsu S13361-3050HS SiPM arrays
- 4x Front-End Boards (FEB)
- 1x Read-Out Board (RDO)
- 1x Cooling plate (< -30 C)

Active area is shaped to resemble the focal surface and best exploits the focalization

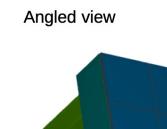
Detector box:

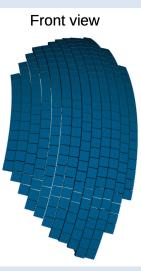

Shaped to fit the space

Quartz window

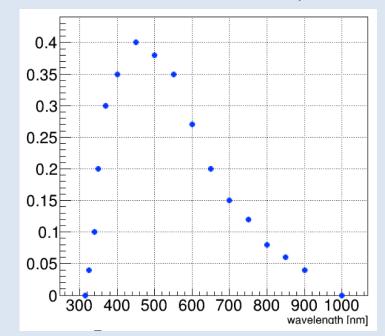

Cooling for sensors and electronics

Power distributing patch panel


Heat insulation



dRICH Simulation Model



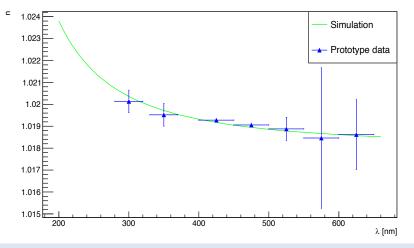
Realistic description accounting for material budget

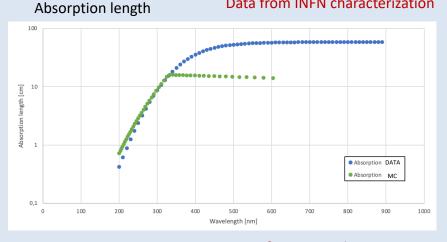
Photon detection efficiency

dRICH Simulation Model

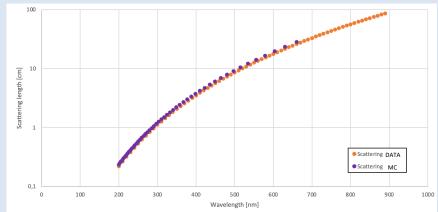
Comparison DATA vs MC model

DATA: Aerogel Factory samples


MC: EPIC parameterizaion

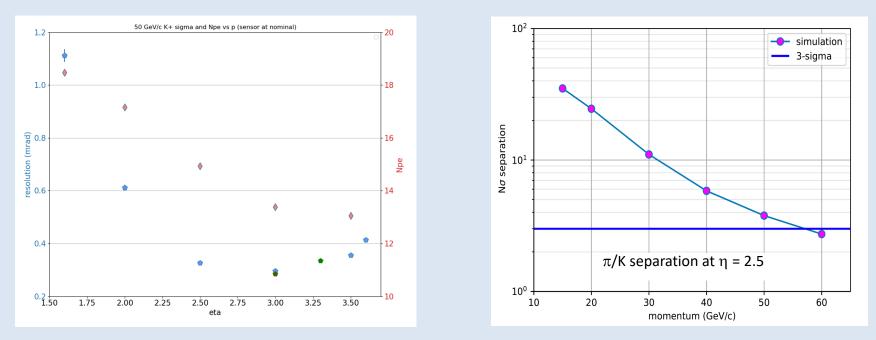

Chromatic dispersion (major expected contribution to resolution)

Data from dRICH prototype

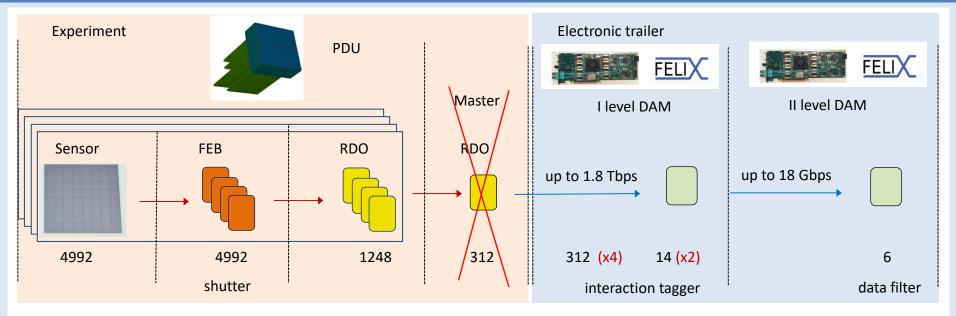


Scattering length

Data from INFN characterization


Data from INFN characterization

dRICH Simulations


Preliminary reshaping provides 0.3-0.35 mrad resolution in the 2.5-3.5 rapidity range

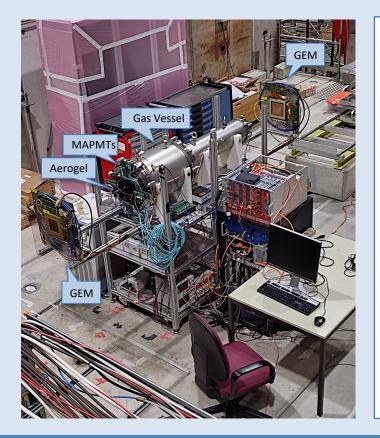
This corresponds to > 3σ separation at 50 GeV/c (magnetic field and track resolution accounted for)

Real optimization in progress accounting for the integration constraints

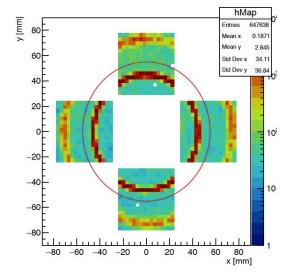
dRICH Readout Scheme

Reduce complexity at the detector level (spare space, custom boards, FPGA/SEU)

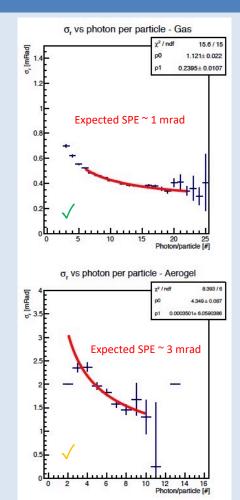
Maximise modularity (detector shaping) and capability (data stream)


DAM Hierarchy: Maximum data rate capability till DAM-L1

Big data reduction at DAM-L1 with external input (2 μ s latency interaction tagger) DAM-L2 data aggregation per sector allows for effective data-reduction algorithms


DAM-L1 might be eventually stored in the experimental Hall (rack enclosure)

R&D: Status


Operative prototype commissioned. Double ring imaging achieved. Performance in line with expectations except for aerogel single-photon angular resolution (worse by a factor ~ 1.5)

Reference readout from CLAS12 RICH: H13700 MA-PMTs + ALCOR3 ToT chip

Gas ring coverage: 60% Aerogel ring coverage: 40 %

R&D: Highlight

Realization of a suitable detector plane for the dRICH prototype (23/10): Design ready, procurement aligned to 2023 test-beam campaign.

Excellent fill factor S14160 alternative

Hamamatsu S13361-3050

MPPC arrays selected with irradiation campaign

Front-end re-design completed

ALCOR v2 (bwetter dynamic range and rate)

ToT architecture, streaming mode ready

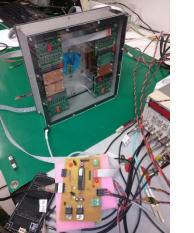
- 50 ps time bin
- 500 kHz rate per channel
- cryogenic compatible

ALCOR chip

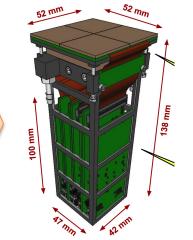
Multi-wafer run done

Version2: 32 channels Extended dynamic range Improved digital time

Integrated Cooling/ In-situ annealing


Cooling plate Peltier cells

8x8 array


Best DCR

50 µm cell

Annealing circuitry

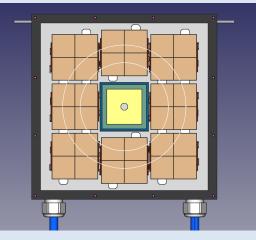
New EIC-driven readout unit

Streaming readout

2023: 1 RDO per chip

2024: 1 RDO per PDU

Development Kit KC705

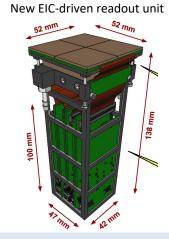

R&D: Milestones

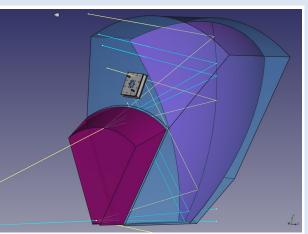
2023: EIC-driven detector plane

 Initial characterization of realistic aerogel and mirror components (23/04);

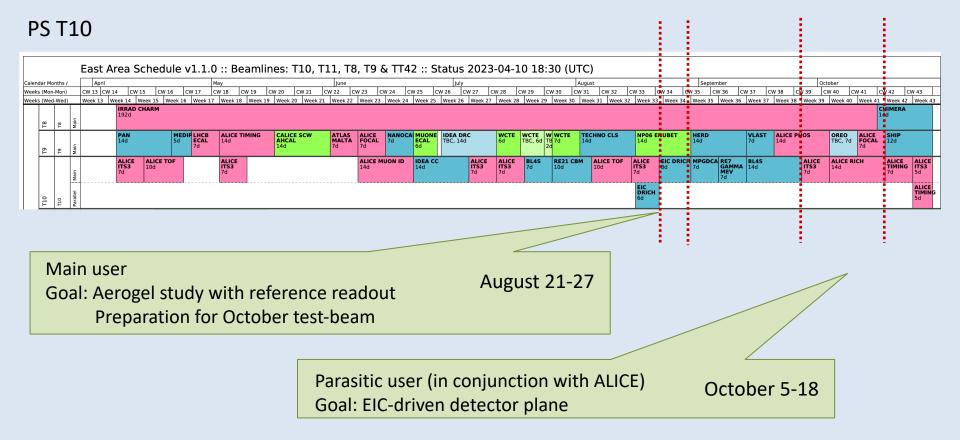
Slide 10

- Projected performance of the baseline detector as integrated into EPIC (23/06); Slide 15
- Assessment of the dRICH prototype performance with the EIC-driven detection plane (23/10). Slide 19


2024: Real-scale prototype for TDR

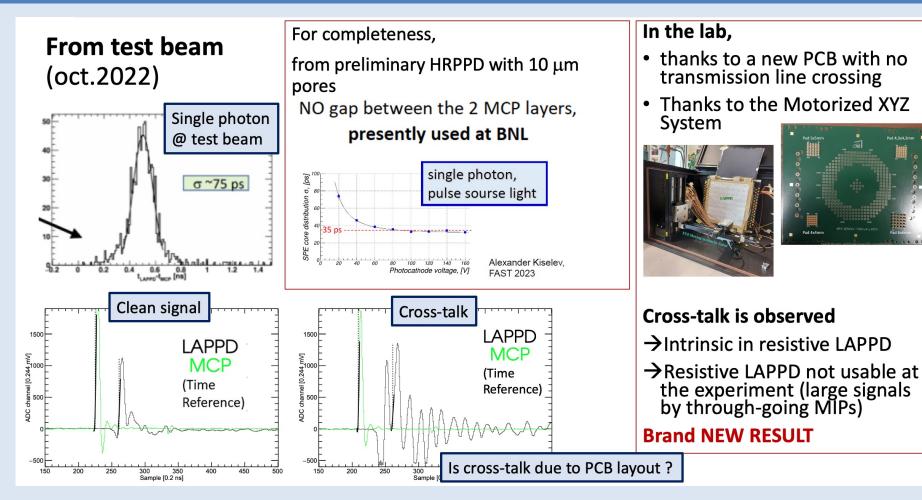

Mechanical structure

Realistic optics (off-axis)


ALCOR64 FEB + RDO

Aerogel and mirror demonstrator

R&D: Test Beams


Component	Baseline	Optimization	Possible improvement
SiPM	Hamamatsu H13361-3050HS	75 μm cell FBK sensor HRPPD	Larger PDE Better time resolution Risk reduction for sensor technology
Aerogel radiator	Aerogel Factory n=1.02	Refractive index Tile dimensions Tsinghua aerogel	Increase photon yield Reduce edge effects Risk reduction for single vendor
Gas radiator	SIAD C ₂ F ₆	Gas mixture Early procurement Pressurized vessel	Reduced environment impact (global warming) Limit dependence on market & regulations Inert (noble) gas, dynamic range
Mechanics	Tecnavan Carbon fiber composite	Al composite	Cost reduction
Mirrors	CMA Carbon fiber composite	Mold material Different core strucuture Tessellation	Better shape quality vs cost
Cooling	Al plate	Carbon foam plate	Reduce material budget

LAPPD/HRPPD versions (limited to the ones of interest for us)

identifier	active surface	pore diameter	anode coupling	notes
	(cm²)	(μm)		
			capaciively	used at October 2022 test beam
LAPPD-generation 2	20 x 20	20	coupled	(what could be available in those
			(resistive!)	days)
LAPPD-generation 2	20 x 20	10	capaciively coupled (resistive!)	presently in TS, to be used for mag. field studies (smaller pore for improved time resolution and improved mag.field performance)
HRPPD, preliminary	10 x 10	10 DC-coupling		NO gap between the 2 MCP layers, presently used at BNL
HRPPD, finalized	10 x 10	10	DC-coupling	5 of them will become available in Jan 2024 , 1 should come to TS

defined during the visit at INCOM premises, Jan 2023

Recent Highlights

Teslameter being acquired

Analog Magnetic Field Transducers

80-

2023

42 cm

- Compact dark box for studies in mag field
- Possibility to rotate the box for various LAPPD orientation
- Measurements in autumn for LAPPD gen. 2 with 10 μm pore

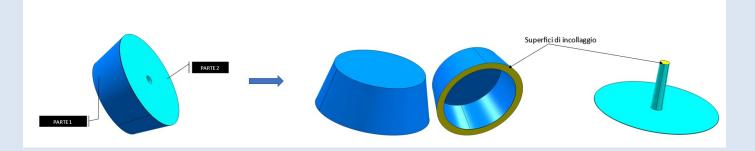
2024

- Repeat measurements in magnetic field using the final HRPPD
- Study the still open question:
 - HRPPD ageing after large integral of light detection (lab studies)

R&D: High-Pressure

Idea: get rid of greenhouse gas and work with Ar at high pressure (+1.5 bar)

Advanced Composite Solutions (visited beginning of February)


Start with a 1:10 carbon fiber mockup

Mockup expected by the end of the month

Sealing test at ACS

Over-pressure tests planned at LNS

dRICH Next

Goal: Consolidate the baseline configuration

Global layout: optimize the performance (acceptance, resolution) within EPIC conjugate physics requirements with mechanical constraints

Mechanics: assess the feasibility of the over-pressure case

Readout: develop an EIC-driven detector plane based on SiPM + ALCORv2 define a sustainable streaming readout architecture

Aerogel: organize an common R&D among the EIC RICH detectors

Mirrors: validate carbon-fiber technology

Prototype: evolve into EIC-driven technology solutions (from reference to realistic components) organize a new test-beam campaign

dRICH Construction Schedule

EIC - Working File Data Date: 02-Jan-20						t ies with 8 Path 06.10.	
WE	WBS Path Activity ID Activity Name			Original Duration	Start	Finish	2022 2023 2023 2024 2025 2026 2027 2028 1 วิปรี 14 ปปหรี 1 วิปรี 14 ปปหรี 1 วิปรี 14 ปปหรี 14 วิปรี 14 ปปหรี 14 วิปรี 14 ปปหรี 14
	Project: EC	CE06 EIC - Wor	king File	1797	01-Oct-21	12-Dec-28	
	WBS: ECE	06.10 EIC Detect	or	1797	01-Oct-21	12-Dec-28	
		i.10.04 Particle Ident		1797	01-Oct-21	12-Dec-28	
	WBS: ECE06		aging Cherenkov Detector (dRICH)	1797	01-Oct-21	12-Dec-28	
	10.04.02	EIPICH _L_FY22	6.10.04.02 - EIPICH - FY22 Labor Actuals	250	01-Oct-21	30-Sep-22	
	10.04.02	E1004_20000	PDR - Preliminary Design, Beam Test & Assessment (dRICH)	110	03-Oct-22	15-Mar-23	
	10.04.02	E1004_20010	Prototyping (dRICH)	313	03-Oct-22	05-Jan-24	
	10.04.02	E1004_20020	Specifications 100% Defined for 3A Procurement (dRICH)	0		31-Oct-22	•
	10.04.02	E1004_20030	PDR _ Preliminary Design Complete (dRICH)	0		15-Mar-23	•
	10.04.02	E1004_20040	FDR - Final Design & Finalize dRICH Design with All Required Services (dRICH) 109	16-Mar-23	17-Aug-23	
0	SiPM						
	10.04.02	E1004_20580	AWARD: Photo Sensors (dRICH)	1	02-Oct-23	03-Oct-23	1
	10.04.02	E1004_20660	AWARD: SiPMs Cooling System (dRICH)	1	02-Oct-23	03-Oct-23	I. I
	10.04.02	E1004_20730	AWARD: Mirror Alignment System (dRICH)	1	02-Oct-23	03-Oct-23	
	10.04.02	E1004_20800	AWARD: Cooling System (dRICH)	1	02-Oct-23	03-Oct-23	1
	10.04.02	E1004_20590	VENDOR EFFORT: Photo Sensors (dRICH)	360	03-Oct-23	17-Mar-25	
	10.04.02	E1004_20080	Write SiPMs Requisition (dRICH)	0		31-Dec-24	•
	10.04.02	E1004_20090	SiPMs Procurement Effort with Technical Support (dRICH)	410	02-Jan-25	19-Aug-26	
	10.04.02	E1004_20630	RCV: Photo Sensors (dRICH)	1	17-Mar-25	18-Mar-25	
	Aeroge	1					
	10.04.02	E1004_20530	AWARD: Aerogel (dRICH)	1	02-May-25	02-May-25	
	10.04.02	E1004_20320	Test & Q.C. First Article Mirror (Includes Developing Test Plan) (dRICH)	115	05-May-25	16-Oct-25	
	10.04.02	E1004_20490	VENDOR EFFORT: C2F6 Gas Recovery System (dRICH)	180	05-May-25	23-Jan-26	

Installation

10.04.02 E1004_20540

VENDOR EFFORT: Aerogel (dRICH)

10.04.02	E1004_20260	Ready for Installation (dRICH) (BNL)	0		09-May-28
10.04.02	E1004_20140	SiPMT & SiPMT Test, Final Acceptance (dRICH)	20	13-Nov-28	12-Dec-28
10.04.02	E1004_20130	SIPMT & SIPMT PCBoard Vendor Delivery (dRICH)	1	12-Dec-28	12-Dec-28
10.04.02	E1004_20150	Ready for Installation (dRICH)	0		12-Dec-28

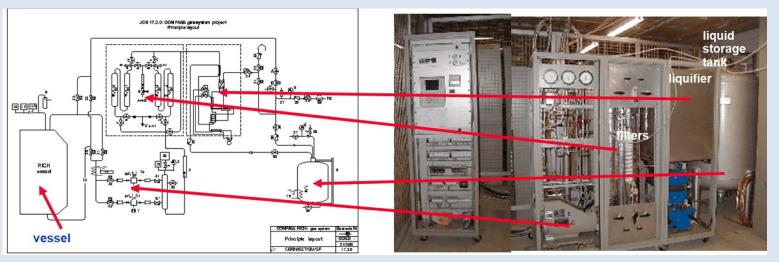
04-May-27

500

05-May-25

٠

dRICH Services


Power supply

Existing systems & standards:

COMPASS C_4F_{10} recirculating and purgingn system

Cooling plants

1 year typical C_2F_6 losses would correspond to 1 intercontinental flight CO_2 emission requires to minimize losses in the recirculating system

About 2-2.5 kW per detector box requires liquid cooling, air circulation + interlock

On-site annealing requires single-sensor temperature (optical) control

Low-T coolant circuit (down to -50 C) requires proper circuit and insulation

Thin transparent septa require delta-pressure control and safety diaphragm

- Aerogel: Refractive index, dimensions, defects, transmittance organized within RICH Consortium (INFN-FE, INFN-BA, CERN, Temple) <u>https://docs.google.com/document/d/1YpN7gx85JjoQnoB9NblD61N9B1YhRGwBh2GIKZ2ST-0/edit</u>
- Mirror: Dimensions, shape accuracy, radius, reflectivity JLab existing test laboratory with INFN-equipment, DUKE laboratory
- Sensors: Electrical connections, quench resistor, I-V characteristics, DCR, relative PDE Test stations in Italy (INFN-BO, INFN-FE, INFN-CS)
- Front-end: Electrical connections, time jitter, ToT characteristics Test stations in Italy (INFN-BO, INFN-TO)
- Gas: Performance with prototype, transparency, contaminants CERN

Detector response:

LED/laser system (sensor response and mirror alignment)

Dark count rate monitor

Single-photon time over threshold

Time calibration:

Absolute time with respect bunch crossing and Forward TOF

Time intercalibration: photons hits from the same event

Particle identification:

Control particle samples (identified by other systems)

Known meson decays (K_s, Λ , Φ)