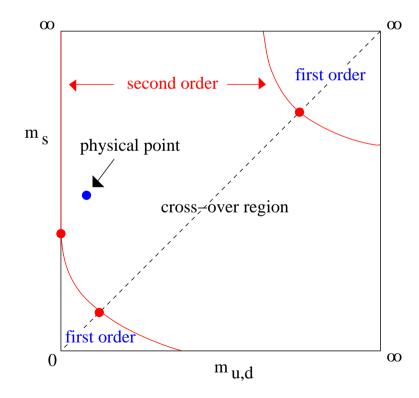
Lecture 2 The Phase Diagram of Strongly Interacting Matter

For $m_q \to \infty$ in SU(N) gauge theory, Z_N symmetry breaking: genuine thermal phase transition

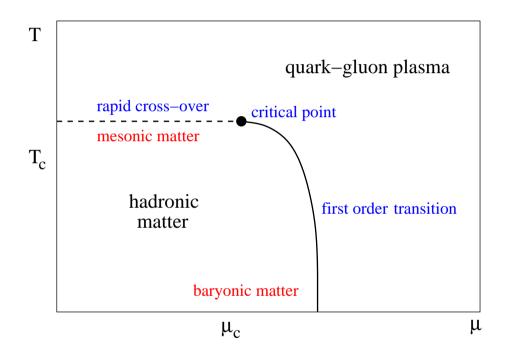
For $m_q \to 0$ in $N_f \ge 2$ flavor QCD, chiral symmetry breaking and restoration: genuine thermal phase transition

in-between?

what determines this structure?

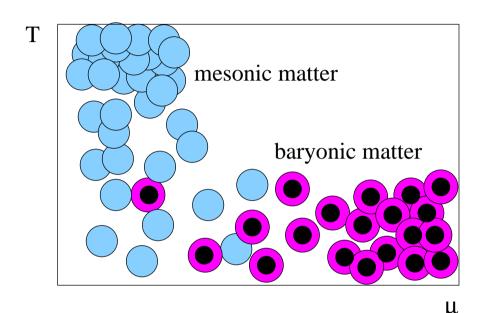


At sufficiently high temperature or large baryon number density: Limits of Hadronic Matter



- different limit forms in different T, μ regions
- does this arise from different hadronic interactions?
- does this lead to different deconfined states of matter?

Constituent Structure of Hadronic Matter



- low μ : with increasing T, mesonic medium of increasing density mesons experience attraction \rightarrow resonance formation mesons are permeable (overlap) \rightarrow resonances \sim same size
- low T: with increasing μ , baryonic medium of increasing density nucleons experience attraction \rightarrow formation of nuclei nucleons repel (hard core) \rightarrow nuclei grow linearly with A

In both cases, \exists clustering

∃ relation between clustering and critical behavior? Frenkel 1939
Essam & Fisher1963

consider spin systems, e.g., Ising model

- ullet for H=0, spontaneous Z_2 symmetry breaking o magnetization transition
- but this can be translated into cluster formation and fusion critical behavior via cluster fusion: percolation ≡ critical behavior via spontaneous symmetry breaking

Fisher 1967, Fortuin & Kasteleyn 1972, Coniglio & Klein 1980

• for $H \neq 0$,
partition function is analytic, no thermal critical behavior
but clustering & percolation persists

Kertész 1989

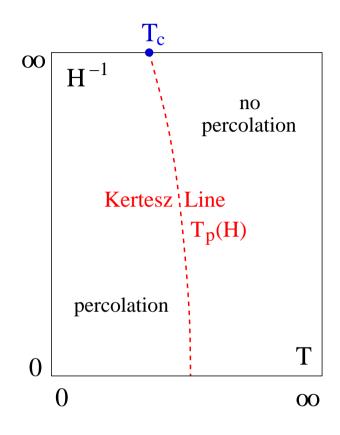
∃ geometic critical behavior

In spin systems,

 \exists geometric critical behavior for all values of H;

for H=0, this becomes identical to thermal critical behavior, with non-analytic partition function & Z_2 exponents

for $H \neq 0$, \exists Kertész line geometric transition with singular cluster behavior & percolation exponents



For spin systems,

thermal critical behavior ⊂ geometric critical behavior

Also in QCD? Hadrons have intrinsic size, with increasing density they form clusters & eventually percolate

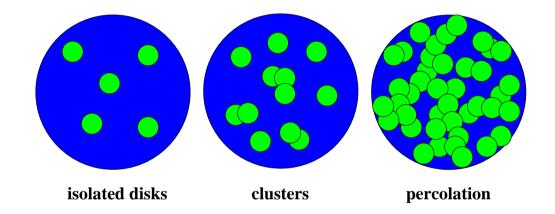
Hadron Percolation \sim Color Deconfinement

Pomeranchuk 1951

Baym 1979, Çelik, Karsch & S. 1980

Recall percolation

• 2-d, with overlap: lilies on a pond



• 3-d: N spheres of volume V_h in box of volume V, with overlap increase density n=N/V until largest cluster spans volume: percolation

critical percolation density $n_p \simeq 0.34/V_h$

at $n = n_P$, 30 % of space filled by overlapping spheres, 70 % still empty

how dense is the percolating cluster? critical cluster density $n_m \simeq 1.2/V_h$

Digal, Fortunato & S. 2004

$$R_h \simeq 0.8 \; {
m fm} \; \Rightarrow \; \; n_m \simeq {0.6 \over {
m fm}^3} \; \; \; {
m as \; deconfinement \; density}$$

so far, cluster constituents were allowed arbitrary overlap

what if they have a hard core?

percolation for spheres of radius R_0 with a hard core of radius $R_{hc}=R_0/2$

Kratky 1988

hard cores tend to prevent dense clusters; higher density needed to achieve percolating clusters

$$n_b \simeq rac{2.0}{V_0} = rac{0.25}{V_{hc}} \simeq rac{1.0}{{
m fm}^3} \simeq 6 \, {
m n}_0$$

for the deconfinement density of baryonic matter

 \exists two percolation thresholds in strongly interacting matter:

- mesonic matter, full overlap: $n_m \simeq 0.6/\mathrm{fm}^3$
- baryonic matter, hard core: $n_b \simeq 1.0/{
 m fm}^3$

now apply to determine critical behavior

If interactions are resonance dominated,

interacting medium \equiv ideal resonance gas

Beth & Uhlenbeck 1937; Dashen, Ma & Bernstein 1969

include all PDG states for $M \leq 2.5$ GeV, partition function

$$\ln \, Z(T,\mu,\mu_S,V) = \sum\limits_{ ext{mesons i}} \ln \, Z_M^i(T,V,\mu_S) + \sum\limits_{ ext{baryons i}} \ln \, Z_B^i(T,\mu,\mu_S,V)$$

for mesonic and baryonic contributions; enforce S=0

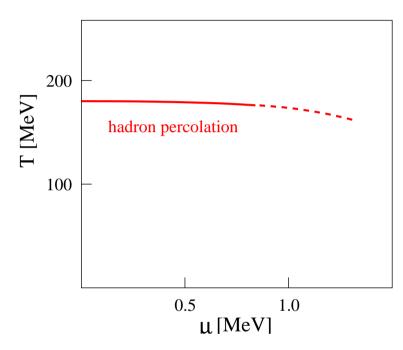
• low baryon-density limit: percolation of overlapping hadrons

$$n_h(T_h,\mu)=rac{\ln Z(T,\mu,V)}{V}=0.6/ ext{fm}^3$$

Obtain at $\mu = 0$

$$T_h \simeq 180 \; \mathrm{MeV}$$

deconfinement temperature based on hadron percolation



baryons included, but hard core effects ignored slow decrease of transition temperature with μ , due to associated production

• high baryon-density limit: percolation of hard-core baryons density of pointlike baryons

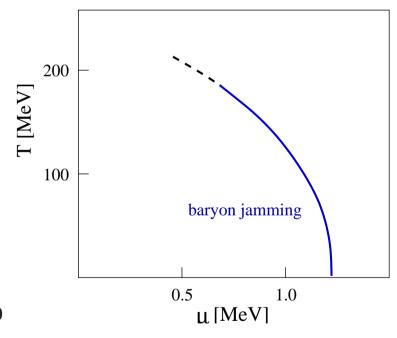
$$n_b^0 = rac{1}{V} igg(rac{\partial \; T \ln Z_B(T,\mu,V)}{\partial \mu} igg)$$

hard core \Rightarrow excluded volume (Van der Waals)

$$n_b=rac{n_b^0}{1+V_{hc}n_b^0}$$

 $\begin{array}{l} percolation \ threshold \\ \rightarrow \ transition \ line \end{array}$

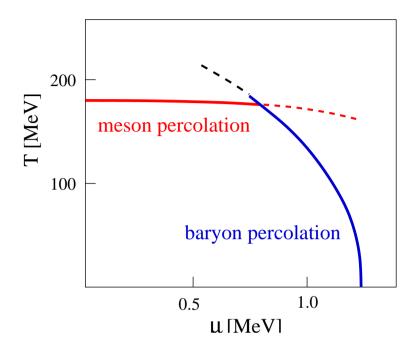
$$n_b^c(T,\mu) = rac{2.0}{V_0} = rac{0.9}{{
m fm}^3} \simeq 5 \,\, n_0$$



combine the two mechanisms:

phase diagram of hadronic matter

- low baryon density: percolation of overlapping hadrons clustering \sim attraction
- high baryon density:percolation of hard-core baryons



NB:

nuclear attraction plus hard-core repulsion $\rightarrow 1^{\rm st}$ order transition

clustering and percolation can provide a conceptual basis for the limits of hadronic matter in the QCD phase diagram

What happens beyond the limits?

There are two roads to deconfinement:

- Increase quark density so that several quarks/antiquarks within confinement radius → pairing ambiguous or meaningless.
- Increase temperature so much that gluon screening forbids communication between quarks/antiquarks distance r apart.

Illustration of the second case: heavy Q correlations, <u>quenched</u> QCD

Quarks separated by about 1 fm no longer "see" each other for $T \geq T_c$

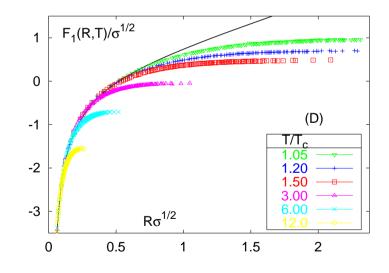
mesonic matter:

when quark density is high enough,

output

line Ro^{1/2}

gluon screening radius is short enough, so both coincide



baryonic matter?

in hadrons & in hadronic matter \exists chiral symmetry breaking \Rightarrow confined quarks acquire effective mass $M_q \simeq 300~{
m MeV}$ effective size $R_q \simeq R_h/3 \simeq 0.3~{
m fm}$ through surrounding gluon cloud

what happens at deconfinement? Possible scenarios:

- ullet plasma of massless quarks and gluons, ground state shift re physical vacuum ullet bag pressure B
- ullet plasma of massive "constituent" quarks, all gluon effects in M_q

"effective" quark? \sim depends on how you look:

- hadronic distances, soft probes: massive constituent quark (additive quark model)
- sub-hadronic distances, hard probes: bare current quark (deep inelastic scattering)

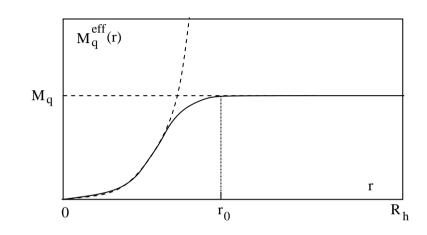
Origin of constituent quark mass? quark polarizes gluon medium → gluon cloud around quark

$$M_q \sim m_q + \epsilon_g r^3$$

where ϵ_g is the change in energy density of the gluon field due to the presence of the quark

QCD:

non-abelian gluon screening limits "visibility" range to r_q



 \rightarrow energy density of gluon cloud and screening radius determine "asymptotic" constituent quark mass \sim gluon cloud

relation to chiral symmetry breaking? estimates from perturbative QCD

Politzer 1976

effective quark mass $M_q^{\mathrm{eff}}(r)$ at distance r

$$M_q^{
m eff}(r)=4\;g^2(r)\;r^2\left[rac{g^2(r)}{g^2(r_0)}
ight]^{-d}\langlear\psi\psi(r_0)
angle$$

with reference point r_0 for determination of $\langle \bar{\psi}\psi(r_0)\rangle$; coupling is

$$g^2(r) = rac{16\pi^2}{9} rac{1}{\ln[1/(r^2\Lambda_{
m QCD}^2)]}$$

for
$$N_f = 3$$
, $N_c = 3 \rightarrow d = 4/9$

constituent quark mass is defined as solution of

$$M_q=M_q^{
m eff}(r=1/2M_q)$$

giving M_q in terms of r_0 and $\langle \bar{\psi}\psi(r_0) \rangle$

With $r_0 = 1/2M_q$ (meeting of perturbative and non-perturbative)

$$M_q^3 = \left\{ rac{16\pi^2}{9} \, rac{1}{\ln(4M_q^2/\Lambda_{QCD}^2)}
ight\} \langle ar{\psi}\psi(r_0)
angle$$

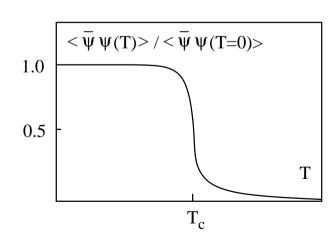
and with $\Lambda_{QCD}=0.2~{
m GeV},~\langle ar{\psi}\psi(r_0)
angle^{1/3}=0.2~{
m GeV}$

$$M_q = 375 \; {
m MeV}; \quad R_q = 0.26 \; {
m fm}$$

constituent quark mass determined by chiral condensate

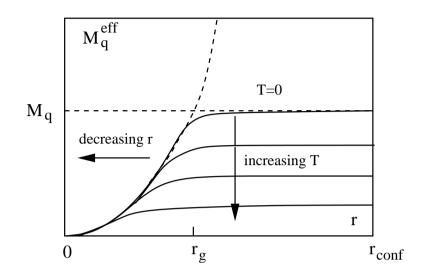
how does $\langle \bar{\psi}\psi(T)\rangle^{1/3}$ change with temperature?

gluon cloud evaporates, constituent quark mass vanishes as $T o T_c$



So there are two ways to make the effective quark mass vanish

- decrease interquark distance
- increase temperature

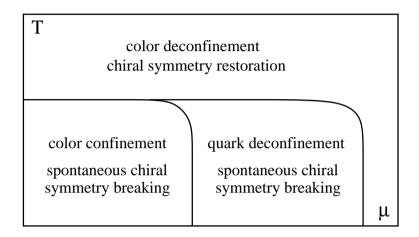


now consider different $T - \mu$ regions:

- $\mu \simeq 0$, $T \simeq T_c$: interquark distance ~ 1 fm but hot medium makes gluon cloud evaporate $\Rightarrow M_q^{\text{eff}} \simeq 0$
- $T \simeq 0$, $\mu \simeq \mu_c$: interquark distance ~ 1 fm and cold medium, gluon cloud does not evaporate $\Rightarrow M_q^{\text{eff}} \simeq M_q$

in cold dense matter, $M_q^{\rm eff} \to 0$ requires short interquark distance \sim constituent quark percolation

intermediate massive quark plasma for 0.3 < r < 1 fm and $T \lesssim T_c$

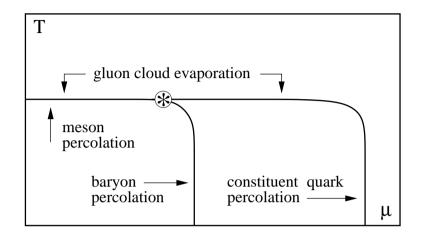


color deconfinement, but chiral symmetry remains broken; constituents: massive colored quarks, gluons only as quark dressing

baryon density limit through quark percolation $n_b^c \simeq 3.5~{\rm fm^{-3}}$

- nuclear matter $n_b \leq 0.9 \text{ fm}^{-3}$
- quark plasma $0.9 \text{ fm}^{-3} \leq n_b \leq 3.5 \text{ fm}^{-3}$
- \bullet quark-gluon plasma $n_b \geq 3.5 \ \mathrm{fm^{-3}}$

Transitions:

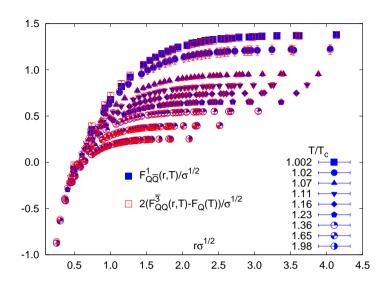


Nature of massive quark plasma

- massive quarks and (at higher T) some massive antiquarks
- no gluons, "chiral pions"?

no color confinement, but colored bound states possible anti-triplet qq bound states = diquarks (genuine two-body states, not Cooper pairs)

attractive interaction for $qq \to {
m color}$ anti-triplet, $q \bar q \to {
m color}$ singlet, with same functional form of potential in r,T

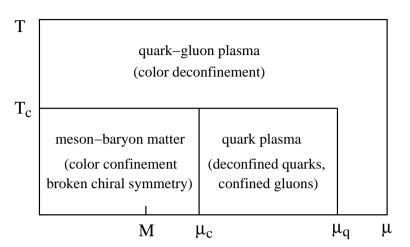


Bielefeld Lattice Group 2002

constituent quark plasma can be structurally similar to hadron gas:

- massive quarks
- ullet (antitriplet) diquark and (singlet) $q\bar{q}$ states
- higher excitations (colored resonance gas)
- also possible: glueballs, chiral pions
- all states have intrinsic finite size, hence ∃ percolation limit

Conclusion



- ⇒ Three State Phase Diagram (modulo color superconductor)
 - Hadronic matter at low T, μ : quarks and gluons confined to hadrons, broken chiral symmetry
 - Quark plasma at low T, large(r) μ : massive deconfined quarks, broken chiral symmetry
 - Quark-gluon plasma at large T, μ : deconfined massless quarks and gluons, restored chiral symmetry

Back-Up

quark plasma has effective color degrees of freedom

- ullet hadron gas: $d_{ ext{eff}}=1$
- ullet massive quark plasma: $d_{ ext{eff}}=N_c$
- ullet quark-gluon plasma: $d_{ ext{eff}} = N_c^2$

relation to quarkyonic matter?

McLerran & Pisarski 2007

phase structure of QCD for $N_c \to \infty$:

• confined hadronic matter is purely mesonic,

since
$$n_b \sim \exp\{(\mu - M)\}$$
, and μ , $M \sim N_c$.

• quark-gluon plasma becomes gluon plasma,

since gluon sector
$$\sim N_c^2$$
, quark sector $\sim N_c$.

• quarkyonic matter proposed to have

color degrees of freedom
$$\sim N_c$$
, hence no "free" gluons.

ullet quark plasma, with $n_q \sim N_c(\mu_q^2 - M_q^2)$, contracted to $\mu_q = M_q$.

