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1) Introduction

For a comprehensive understanding of extreme events, we
need to estimate the probabilities of extreme values
occurring jointly across multiple variables.
Objective: To model the joint behavior of extreme
variables
The common procedure consists in
1. Modeling the marginal variables individually, then rescaling

them to have a common standard distribution,
→ We consider a random variable Z ∈ Rd

+ with known unit
Fréchet margins.

2. Focusing on modeling their dependence structure.
→ For this purpose, we transform to angular variables:
Z → (R,W),

R = ∥Z∥1 and W = Z/R.
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• The radius and the angle are independent as R → ∞.

• The asymptotic distribution Pr[Z ≥ z | R ≥ u] can be fully
characterised by the angular density function h of W as
the threshold u → ∞.

(!!) The density function h necessarily lies in

H = {h : SD → [0, 1] :
∫
wdh(w)dw = D−1, d = 1, . . . , D}

where SD = {w ∈ RD
+ : ∥w∥1 = 1}.

2) The Dirichlet mixture model

As functions with support on the unit simplex, any angular
density in H can be approximated by a constrained Dirichlet
mixture for some K ∈ N+:

f (w) =

K∑
k=1

ηkB
−1(αk)

D∏
=1

wαkd−1
d , w ∈ SD, (cMD)

• η = (η1, . . . , ηK) ≥ 0, such that
∑K

k=1 ηk = 1,

• ∀k = 1, . . . , K, αk ≥ 0 , such that
K∑
k=1

ηk
αkd∑D
p=1αkp

= D−1, d = 1, . . . , D. (⋆)

However, the implementation of such models tends to be too
slow especially in high dimensions.
(Boldi and Davison, 2007; Sabourin and Naveau, 2014)

3) The tilted Dirichlet mixture model

A theorem of Coles and Tawn (1991) gives a way to
generate valid angular densities by transforming
non-constrained ones. The tilted Dirichlet mixture is

f (w) =
K∑
k=1

ηkB(αk)
−1 (w′αk)

−1′αk

D∏
d=1

mαkd

d

D∏
d=1

wαkd−1
d︸ ︷︷ ︸

:=fk(w)

, (tMD)

for all w ∈ SD, where md :=
∑K

k=1 ηkαkd/(1
′αk), for

d = 1, . . . , D.

Theorem:
The class of (tDM) density functions is dense in H.
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Original and tilted Dirichlet mixtures

The mixture allow the probabilistic clustering of observations,
so multivariate exceedances can be represented via clusters
concentrated in distinct regions of the space which can be
analysed separately in lower dimensions.

4) Reversible jump MCMC algorithm

Data Augmentation: We denote the parameter vector by
θ = (K,α1, . . . , αK, η) and consider the observations
w1, . . . ,wN . We augment the data with latent allocation
variables Y1, . . . , YN such that

Yi = k ⇔ wi generated by component k.

Complete likelihood: L(θ) =
∏N

i=1 f (wi, Yi | θ) where

f (wi, Yi | θ) =
K∏
k=1

fk(wi)
1[Yi=k].

At each iteration, we first keep K constant and run a
Metropolis–Hasting algorithm.

1. The proposed parameters do not need to satisfy (⋆), so the
parameters can be proposed more easily.

2. The acceptance probability is calculated with by evaluating
the tilted likelihood function , hence he accepted
parameters are consistent with a valid angular density.

We extend each iteration with a Split/Merge step following the
algorithm introduced by Richardson and Green (1997) in
order to sample the number of components K in
{Kmin, ..., Kmax}.

1. We either merge two adjacent components or split one into
two adjacent ones.

2. Both moves have equal probability and are defined to be
the reverse of each other.

3. The probability of accepting each move is based on the
tilted likelihood function.

The MCMC algorithm generates a chain of density functions,
colored here based on the number of components. The black
curve represents the true density of the data sample.

5) Clustering the observations

The tilted Dirichlet mixture generates a soft clustering of the
data into groups concentrated into distinct subspaces of the
unit simplex, which we can summarize in any dimension D
and for any component number K via the N ×N expected
posterior adjacency matrix

Pij = Pr[wi and wj are clustered together].

Among the chain of clusterings generated by the MCMC
algorithm, we can select the one optimising a given criterion,
for example minimizing Binder’s distance to P

Â = argmin

A : (N(N − 1))−1
∑
i ̸=j

|Aij − Pij|

 . (Binder)

We can then use the associated parameters to generate new
data.
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6) The running time of the algorithm

D \N 50 200 500
5 3.75 5.09 11.20

10 3.74 5.66 12.50
20 3.05 5.74 13.31

The running time in minutes of 10000 iterations increases with
the sample size N but not with the dimesions D.

7) Application: Financial risk

• We consider 10 time series of daily negative returns in dif-
ferent sectors of the market, observed simultaneously for 20
years.

• We fit a ARMA–GARCH(1, 1) model to each margin sepa-
rately with t-student residuals;

• Question: What is the dependence structure between the
extremely high residuals of each sector?

• We rescale them to unit Fréchet and select the multivariate
residuals for which the sum exceeds the 0.97th quantile.
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• We then apply the RJMCMC procedure and obtain a clus-
tering of the angular variables.

• Most clusters show high residuals for one sector without the
others.

• The largest clusters (each > 17%) concern healthcare, utili-
ties and non-durable goods respectively.

• Roughly 13% of the observations belong to a cluster where
several sectors tend to have relatively high residuals simul-
taneously.
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8) Conclusion

• The angular density function is a full summary of the ex-
tremal dependence structure.

• The tilted Dirichlet mixture model is a valid angular density
which is dense in the class of interest.

• The (tDM) model is easy to implement via a RJMCMC algo-
rithm because its parameters are unconstrained.
→ Easy proposals for the parameters. → No fine-tuning of
the initial values.
→ Higher dimensions are treated more quickly than previ-
ous models.

• This approach produces a soft clustering of the observations
as an integral part of the MCMC output.
→ Modelling the heterogeneity in the extremal dependence
structure ultimately allows us to analyse the clusters sepa-
rately in lower dimensions.
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